
Chapter 9
Implementing Methods for Analysing Music
Based on Lerdahl and Jackendoff’s Generative
Theory of Tonal Music

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo

Abstract We describe and discuss our computer implementations of Lerdahl and
Jackendoff’s (1983) Generative Theory of Tonal Music (GTTM). We consider this
theory to be one of the most relevant music theories with regard to formalization
because it captures aspects of musical phenomena based on the Gestalts perceived
in music and presents these aspects with relatively rigid rules. However, the theory
has several problems in terms of computer implementation. To overcome these
problems, we have proposed four different kinds of analyser: an automatic time-
span tree analyser (ATTA); a fully automatic time-span tree analyser (FATTA); the
σGTTM analyser, which detects local grouping boundaries by combining GTTM
with statistical learning using a decision tree; and the σGTTM-II analyser, with
which we introduce full parameterization and statistical learning.

9.1 Introduction

Over the past ten years, we have developed several music analysers, based on Lerdahl
and Jackendoff’s (1983) Generative Theory of Tonal Music (GTTM), which provide
us with abstracted structures from scores (Hamanaka et al., 2006, 2007; Kanamori
and Hamanaka, 2014; Miura et al., 2009). When implementing music-theory-based
methods for analysing music on a computer, we have to consider several problems,
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including ambiguity, dependence on context and the trade-off between automation and
variation in analysis results. Each of these problems will now be briefly introduced.

Ambiguity in music analysis A piece of music will typically have more than
one interpretation, and dealing with such ambiguity is a major obstacle
when implementing a music theory on a computer. We have to consider
two types of ambiguity in music analysis, one involving human understand-
ing of music and the other concerning the representation of music theory.
The former stems from subjective interpretation and the latter from the
incompleteness of formal theory. GTTM is no exception. Therefore, due to
the presence of ambiguity, we assume that there is always more than one
correct result.

Context dependence in music analysis Even if the same musicologist analy-
ses the same note sequence, the analysis results will not always be the same.
This is because the results depend on so many different factors, such as
rhythm, chord progression, melody of the other parts, and the historical pe-
riod in which the piece of music was composed. Moreover, a musicologist
might take into account other unknown factors.

Trade-off relationship in music analysis There is a trade-off relationship be-
tween the automation of the analysis process and variation in the analysis
results. Since an analysis program outputs only one interpretation for a
given score, different ways of interpreting that score are ignored.

These problems are not specific to music analysis but arise whenever we try to build
a computer model of an ability that, in a human, would require intelligence. This
includes most abilities that involve recognition or understanding. Therefore, imple-
menting a music theory on a computer can be considered an artificial intelligence
problem.

The rest of this chapter is organized as follows. In Sects. 9.2 and 9.3, we give
a brief overview of GTTM and present related work. In Sect. 9.4, we discuss the
difficulty of implementing the theory on a computer. In Sects. 9.5 to 9.8, we go
into depth about the four proposed analysers: the automatic time-span tree analyser
(ATTA), the fully automatic time-span tree analyser (FATTA), the σGTTM analyser,
and the σGTTM-II analyser. In Sect. 9.9, we propose our interactive analyser for the
theory, and in Sect. 9.10, we describe a GTTM database we have constructed. Some
experimental results are presented in Sect. 9.11.

9.2 Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal
Music

Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal Music (henceforth,
GTTM) generates four different types of structural description for a piece of music,
each one intended to represent a separate aspect of the way that a listener understands
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Fig. 9.1 Grouping structure, metrical structure, time-span tree, and prolongational tree

the piece. The respective outputs are a grouping structure, a metrical structure, a
time-span tree, and a prolongational tree (see Fig. 9.1).

The grouping structure is intended to formalize the intuition that tonal music is
organized into groups composed of subgroups (see bottom row in Fig. 9.1). The
metrical structure describes the rhythmic hierarchy of a piece by identifying the
positions of beats at different metrical levels. Metrical levels are represented as rows
of dots below the staff. For example, in Fig. 9.1, the strongest beats occur at the
beginning of every second bar, the next strongest at the beginning of each bar, the
next strongest at the quarter note level and so on. The time-span tree is a binary
tree having a hierarchical structure that describes the relative structural importance
of notes that differentiate the essential parts of the melody from the ornamentation.
The prolongational tree is a binary tree that expresses the structure of tension and
relaxation in a piece of music.

A GTTM analysis has four processes: grouping structure analysis, metrical struc-
ture analysis, time-span reduction analysis, and prolongational reduction analysis.
Each process has two types of rule: well-formedness rules (WFRs) and preference
rules (PRs). Well-formedness rules are necessary conditions on assigning the struc-
ture and restrictions on these structures. For example, the GWFRs (grouping WFRs)
are defined as follows (Lerdahl and Jackendoff, 1983, p. 345):

GWFR1: Any contiguous sequence of pitch events, drum beats, or the like can constitute a
group, and only contiguous sequences can constitute a group.

GWFR2: A piece constitutes a group.

GWFR3: A group may contain smaller groups.

GWFR4: If group G1 contains part of group G2, it must contain all of G2.

GWFR5: If group G1 contains a smaller group G2, then G1 must be exhaustively partitioned
into smaller groups.
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Fig. 9.2 Examples of GWFRs
being satisfied or violated

The grouping structure in Fig. 9.2(a) satisfies all the GWFRs. In contrast, the
grouping structure in Fig. 9.2(b) violates GWFR4 because a segment boundary at the
second level of the grouping structure occurs in the middle of a group at the lowest
level. The grouping structure in Fig. 9.2(c) violates GWFR5 because group c2 is not
exhaustively partitioned into smaller groups.

When more than one structure can satisfy the WFRs, the PRs indicate the supe-
riority of one structure over another. In the PRs, some rules are for the local level
and others for the hierarchical level. For example, GPR2 is a local rule that is applied
to four consecutive notes n1,n2,n3,n4 as follows (Lerdahl and Jackendoff, 1983,
p. 345):

GPR 2 (Proximity) Consider a sequence of four notes n1,n2,n3,n4. All else being equal,
the transition n2–n3 may be heard as a group boundary if

a. (Slur/Rest) the interval of time from the end of n2 to the beginning of n3 is greater
than that from the end of n1 to the beginning of n2 and that from the end of n3 to the
beginning of n4, or if

b. (Attack-point) the interval of time between the attack points of n2 and n3 is greater
than that between the attack points of n1 and n2 and that between the attack points of
n3 and n4.

GPR2b is applied after a note that has a long duration (Fig. 9.3(a)), while GPR2a is
applied after a note that has a long gap, even if the inter-onset interval (IOI) of each
note is equal (Fig. 9.3(b)).

Fig. 9.3 Application of
GPR2b and GPR2a
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9.3 Related Work

Here, we briefly take a look at the history of cognitive music theory. The implication–
realization model (IRM) proposed by Eugene Narmour abstracts and represents
music according to changes in a melody, expressed symbolically (Narmour, 1990,
1992). The IRM has recently been implemented on computers, which can acquire
the chain structures of IRM from a score (Yazawa et al., 2014). Schenkerian analysis
acquires a deeper structure, called the Urlinie and Ursatz, from the musical surface
(Schenker, 1935). Short segments of music can be analysed through Schenkerian
analysis on a computer (Marsden, 2011). Other examples of music theories that
lend themselves to computer implementation include that of Lerdahl (2001). The
preference rule approach, pioneered by Lerdahl and Jackendoff (1983), was also
adopted by Temperley (2001) and Daniel Sleator in their Melisma Music Analyzer.1

The main advantage of analysis by GTTM is that it can acquire tree structures
(specifically, time-span and prolongational trees). These trees provide a summariza-
tion of a piece of music, which can then be used as the representation of an abstraction,
resulting in a music retrieval system (Hirata and Matsuda, 2003). It can also be used
for performance rendering to generate expressive musical performances (Hirata and
Hiraga, 2003) and to reproduce music (Hirata and Matsuda, 2004). Moreover, the
time-span tree can be used for melody prediction (Hamanaka et al., 2008a) and
melody morphing (Hamanaka et al., 2008b). Figure 9.4 shows an iOS application
that implements this melody morphing method and changes the degree of morphing
of each half bar by using the values from the device’s accelerometer (Hamanaka et al.,
2011). When the user stops moving the device, the unit plays the backing melody of
“The Other Day, I Met a Bear (The Bear Song)”. When the user shakes it vigorously,
it plays heavy soloing. When the user shakes it slowly, it plays a morphed melody
ranging in morphing degree from copying the backing to heavy soloing.

The grouping structure analysis generated by GTTM is a type of melody segmen-
tation. Previous segmentation methods have been unable to construct hierarchical
grouping structures because they have been focused on detecting the local bound-

Fig. 9.4 ShakeGuitar

1 Available at http://www.link.cs.cmu.edu/melisma/
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aries of a melody (Cambouropoulos, 2006; Rodriguez-Lopez et al., 2014; Stammen
and Pennycook, 1994; Temperley, 2001). A metrical structure analysis generated
by GTTM, in contrast, is a kind of beat tracking. Current methods based on beat
tracking (Davies and Bock, 2014; Dixon, 2001; Goto, 2001; Rosenthal, 1992) are
only able to acquire the hierarchical metrical structure up to the bar level but not
above that (e.g., at the two- and four-bar level).

9.4 Problems with Implementing GTTM

There are a number of features of GTTM that make it difficult to implement as a
computer program. The main problems with implementation are discussed in this
section.

9.4.1 Ambiguous Rule Definition

Some rules in GTTM are expressed ambiguously. For example, GPR4 is defined as
follows (Lerdahl and Jackendoff, 1983, p. 346):

GPR4 (Intensification) Where the effects picked out by GPRs 2 and 3 are relatively more
pronounced, a larger-level group boundary may be placed.

The words “relatively” and “may be” in this sentence are ambiguous. The sentence
also contains the phrase “more pronounced”, but the comparison is unclear. Another
example is that GTTM has rules for selecting proper structures when discovering
similar melodies (called parallelism), but does not define similarity. To implement
such ambiguous rules on a computer, we have to formalize the criteria for deciding
whether each rule is applicable.

Fig. 9.5 Example of conflict between PRs
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9.4.2 Conflict Among Preference Rules

Because there is no strict order for applying the GTTM rules, conflict between rules
often occurs when applying them, resulting in ambiguities in analysis. Figure 9.5(a)
shows a simple example of a conflict between GPR2b (Attack-Point) and GPR3a
(Register). GPR2b states that a relatively greater interval of time between attack
points initiates a grouping boundary, while GPR3a states that relatively greater pitch
differences between smaller neighbouring intervals initiates a grouping boundary.
Because GPR1 (alternative form) strongly prefers that note 3 in Fig. 9.5(a) should
not form a group on its own, placing boundaries between notes 2 and 3 and between
notes 3 and 4 is discouraged.

Figure 9.5(b) shows an example of conflict between MPRs 5c and 5a. MPR5c
states that a relatively long slur results in a strong beat, and MPR5a states that a
relatively long pitch event results in a strong beat. Because metrical well-formedness
rule 3 (MWFR3) states that strong beats are spaced either two or three beats apart, a
strong beat cannot be perceived at the onset of both the first and second notes.

To solve these problems, we have introduced the notion of parameterization in
Sect. 9.5. Each rule in the theory should be given a weight, allowing the strength
of its effect to be compared with that of other rules; this weight can be regarded as
a parameter of the analysis process. In addition, we have externalized the hidden
alternatives in the theory. This externalization in mechanizing GTTM includes
introducing an algorithm for generating a hierarchical structure of the time-span tree.
We call such weighting and externalization full parameterization. Employing these
parameters together with statistical learning, we obtain a methodology to control the
strength of each rule (described in Sect. 9.7).

9.4.3 Lack of Working Algorithm

Lerdahl and Jackendoff (1983) do not specify an algorithm for constructing a hierar-
chical structure because the preference rules only indicate preferred structures. For
example, no algorithm is provided for acquiring a hierarchical grouping structure
after acquiring local grouping boundaries in the grouping structure analysis. Also,
there are many time-span reduction preference rules (TSRPRs) for selecting the head
of a time-span, and there are various examples of analysis. However, no algorithm is
presented for acquiring the hierarchical time-span tree. It is not realistic to first gener-
ate every structure that satisfies the WFRs and then select the optimal structure. For
example, even for a musical fragment containing just 10 notes, there are 185,794,560
(= 92 ∗9!) possible time-span trees.

To solve this problem, in Sect. 9.5 we present an algorithm for acquiring the
hierarchical structure, taking into consideration some of the examples in GTTM
(Hamanaka et al., 2006).
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9.4.4 Less Precise Explanation of Feedback Link

GTTM has various feedback links from higher-level structures to lower-level ones,
e.g., GPR7 (time-span and prolongational stability) requires a grouping structure
that results in a more stable time-span and/or prolongational reduction. However, no
detailed description and only a few examples are given.

Other feedback links in the GTTM rules are not explicit. For example, analysing
the results of a time-span tree strongly affects the interpretation of chord progression,
and various rules are related to chord progression, e.g., MPR7 (Cadence) requires a
metrical structure in which cadences are metrically stable.

To solve this problem, in Sect. 9.9, we propose a tool that allows a user to modify
the automatic analysis process and manually edit the structures generated. A user can
thus acquire a target analysis that reflects his or her interpretation of a piece of music
by iterating the automatic and manual processes interactively and easily.

9.5 ATTA: Automatic Time-Span Tree Analyser

We extended the original theory of GTTM with full externalization and parameter-
ization and proposed a machine-executable extension of GTTM called exGTTM
(Hamanaka et al., 2006). The externalization includes introducing an algorithm
to generate the hierarchical structure of a time-span tree using a combination of
top-down and bottom-up processes. The parameterization includes introducing a
parameter for controlling the priorities of rules, in order to avoid conflict among rules,
as well as parameters for controlling the shape of the hierarchical time-span tree. We
developed an automatic time-span tree analyser (ATTA) to implement exGTTM. The
user can manually configure parameters and thus alter the analysis results generated
by the program. An example of constructing a time-span tree is given in the following
subsections.

9.5.1 Time-Span Segmentation

In the procedure of time-span reduction, we divide the entire piece into hierarchical
time-spans. The division procedure, shown in Fig. 9.6, is as follows.

1. Regard all of the resultant groups in a grouping analysis as time-spans.
2. Divide a time-span into two at the strongest beat when a time-span in the lowest

level includes more than one note.
3. Repeat 2 recursively.

Steps 1 and 2 correspond, respectively, to Lerdahl and Jackendoff’s (1983, pp. 146–
147) time-span reduction Segmentation Rules 1 and 2.
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Fig. 9.6 Time-span segmentation

9.5.2 Implementation of Time-Span Reduction Preference Rules

A piece of music is formed into a binary tree where, at each node, the more important
branch extends upward as a head node. The selection of a head at each node is
hierarchically computed from the lower level. Therefore, heads are selected from
leaves to root branches. At the lowest level, every note is selected as a head for its
time-span and the next level head is selected repetitively. In this section, we explain
our implementations of time-span reduction preference rules (TSRPRs) 1, 3, 4, 8
and 9.

9.5.2.1 Calculation of Basic Parameters

For each level in the hierarchy, we provide the following basic parameters and
rule-application principles.

We calculate four basic parameters:

φi Offset-to-onset interval (OOI) of ith gap between heads
ψi Inter-onset interval (IOI) of ith gap between heads
ξi Difference in pitch in semitones of ith gap between heads
µi Number of metrical levels in which ith head is a beat

The term i indicates the order of heads at the current level of time-span. For example,
at the lowest level, the head order is the same as the note order. In the first three
parameters, i represents the ith gap between heads, that is, the gap between the ith
and (i+1)th head, while µi is the number of metrical dots for the ith head (i.e., the
number of metrical levels in which the ith head is a beat). The probability that the
ith head becomes a next-level head by the kth rule is denoted by DTSRPRk(i) where
0≤ DTSRPRk(i)≤ 1 and k ∈ {1,3,4,8,9}. The basic parameters and DTSRPRk(i) are
renewed at each level in the time-span tree, because the number of heads changes as
a result of selecting heads at each hierarchical level.
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9.5.2.2 Implementation of TSRPR1 (Metrical Position)

TSRPR1 prefers heads of time-spans to occur in relatively strong metrical positions.
We normalize the strength between 0 and 1 and define the likelihood of an event
being a head by the number of metrical dots divided by the maximum number of
metrical dots, thus

DTSRPR1(i) = µi/max
j

µ j . (9.1)

9.5.2.3 Implementation of TSRPR3 (Registral Extremes)

TSRPR3 is concerned with the pitch of a head. TSRPR3a weakly prefers an event to
be a head if its melodic pitch is higher; while TSRPR3b weakly prefers an event to
be a head if its bass pitch is lower. Thus, DTSRPR3a(i) returns a higher value if ξi is
higher:2

DTSRPR3a(i) = ξi/max
j

ξ j . (9.2)

Conversely, DTSRPR3b(i) returns a higher value if ξi is lower:

DTSRPR3b(i) = 1−ξi/max
j

ξ j . (9.3)

9.5.2.4 Implementation of TSRPR4 (Parallelism)

TSRPR4 involves parallelism and prefers heads to be in parallel positions in time-
spans that are construed to be parallel. The parallelism between heads in the current
hierarchical level’s time-spans is evaluated using the same method as is used in the
grouping and metrical analysis.

DTSRPR4(i) is calculated as follows. First, we calculate the similarity between the
interval from head i with length r and the one from j with the same length. Next, for
each i, we calculate the similarity for all js with the same length r. As Lerdahl and
Jackendoff (1983) do not define an effective melodic similarity measure, we define
our own. This similarity measure does not affect any other parts of the system, so we
can substitute other methods such as that proposed by Hewlett and Selfridge-Field
(1998).

Let us first consider the example in Fig. 9.7. In the figure, three notes out of
four coincide with respect to onset time. Two notes out of the three also coincide
with respect to pitch. In our implementation, we regard a greater number of notes
having the same onset time as indicating greater similarity of melodies. Furthermore,
the greater the number of instances where notes with the same onset time have the
same pitch, the more similar the melodies are considered to be. In the example in

2 There are several ways in which registral extremity could be explicated. We define DTSRPRk(i)
as simply as possible in order to allow the user who is manipulating the parameters of ATTA to
understand it easily.
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Fig. 9.7 Similarity of parallel
phrases

Fig. 9.7, we use notes and their durations for explanation. However, when calculating
similarity of time-spans, we use heads and the lengths of their time-spans.

We formalize the above discussion as follows. We assume that the beginning and
ending heads possess beats and that the length of an interval r is a multiple of a
beat. Also, we assume that parallelism cannot occur between time-spans separated
by distances less than, say, a quarter note of a beat. Given a beat number m (≥ 1),
we write the interval of r beats from m as [m,m+ r), which does not include the
(m+ r)th beat. We define the basic parameters as follows:

N(m,r) the number of heads in [m,m+ r).
O(m,n,r) the number of heads with the same time-span onset in

[m,m+ r) and [n,n+ r).
P(m,n,r) the number of heads with the same pitch, as well as the same

time-span onset.

We define the similarity between intervals [m,m+ r) and [n,n+ r) with these param-
eters:

G(m,n,r) =
{

O(m,n,r)
N(m,r)+N(n,r)

× (1−Wm)+
P(m,n,r)
O(m,n,r)

×Wm

}
× rWl , (9.4)

where

Wm (0≤Wm ≤ 1) For each head, gives more weight to similarity of time-span
onset than similarity of pitch.

Wl (0≤Wl ≤ 1) Gives more weight to longer intervals, r, than shorter ones,
when parallel intervals overlap each other.

In the above expressions, 1 ≤ m,n ≤ L− r+1 and 1 ≤ r ≤ L, where L is the total
number of beats. Beyond this domain, we regard G(m,n,r) = 0. Note that rWl be-
comes 1 when Wl = 0, and as r increases, rWl also increases provided Wl > 0. Thus,
as Wl approaches 1, the similarity of longer intervals becomes more significant.

The similarity of head i in [m,m+ r) and j in [m,m+ s) is expressed by

A(i, j) = G(timespans(i), timespans( j), timespansize(i)), (9.5)

where timespans(i) is the first beat of the time-span including i, and timespansize(i) is
the length (the number of beats) of the time-span including i. We define DTSRPR4(i, j),
by normalizing A(i, j), as

DTSRPR4(i, j) =

{
A(i, j)/Amax, if timespanpos(i) = timespanpos( j);
0, otherwise.

(9.6)
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where Amax = max(A(i,1),A(i,2), . . . ,A(i,L)) and timespanpos(i) is the interval
from the beginning of the time-span to i. Note that i indicates the order of heads at the
current time-span level, after which DTSRPR4(i, j) renews at each level of time-span.

9.5.2.5 Implementation of TSRPR8 (Structural Beginning)

TSRPR8 prefers heads to be nearer the beginnings of their time spans. DTSRPR8(i)
returns 1 if the head is at the beginning position; otherwise, 0:

DTSRPR8(i) =

{
1, if i = istart,
0, otherwise,

(9.7)

where istart is the head at the beginning of the time-span.

9.5.2.6 Implementation of TSRPR9 (Structural Ending)

TSRPR9 prefers heads to be nearer the tails of their time-spans. DTSRPR9(i) returns 1
if the head is at the tail position, otherwise, 0:

DTSRPR9(i) =

{
1, if i = iend ,
0, otherwise,

(9.8)

where iend is the head at the tail of the time-span.

9.5.3 Generation of Time-Span Tree

We calculate the plausibility of head Dtimespan(i) using DTSRPRk(i) where k ∈
{1,3a,3b,4,8,9}, as follows:

Dtimespan(i) = Btimespan(i)+∑
k

{
Btimespan(k)×STSRPR4, if DTSRPR4(i,k) = 1,
0, if DTSRPR4(i,k) = 0,

(9.9)
where

Btimespan(i) = ∑
k

DTSRPRk(i)×STSRPRk (9.10)

where k ∈ {1,3a,3b,8,9}. STSRPRk indicates the relative weighting associated with
each rule. The larger this value is, the more strongly the rule acts. Btimespan(i) repre-
sents the weighted summation of STSRPRk and DTSRPRk(i) where k is the rule number
and Dtimespan(i) represents the sum of Btimespan(i) and the summation of Btimespan(k),
where the ith head and kth head are parallel and consequently DTSRPR4(i,k) = 1. A
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Fig. 9.8 Selecting next-level heads

hierarchical time-span tree is constructed by iterating the calculation of the plausi-
bility of head Dtimespan(i) for the current heads and choosing the next-level heads
(Fig. 9.8). If there are two candidate heads in the current hierarchical level, we choose
the next-level head ĥ, as expressed by

ĥ =

{
i, if Dtimespan(i)≤ Dtimespan( j);
j, otherwise.

(9.11)

The order of choosing the next-level head is the reverse of that of constructing time-
spans in the time-span segmentation, as described in Sect. 9.5.2. DTSRPRk(i) and
Dtimespan(i) are renewed at each level of the hierarchy, since i indicates the order of
heads in the current level and changes at each level of time-spans.

9.6 FATTA: Fully Automatic Time-Span Tree Analyser

Although the ATTA has adjustable parameters for controlling the weight or priority
of each rule, these parameters have to be set manually (Hamanaka et al., 2006). This
takes a long time, because finding the optimal values of the settings themselves takes
a long time. Therefore, we also developed a fully automatic time-span tree analyser
(FATTA), which can automatically estimate the optimal parameters by introducing a
feedback loop from higher-level structures to lower-level structures on the basis of
the stability defined in GPR7 and TSRPR5 (Hamanaka et al., 2007):

GPR7 (Time-Span and Prolongational Stability) Prefer a grouping structure that
results in more stable time-span and/or prolongational reductions.

(Lerdahl and Jackendoff, 1983, p. 52)

and
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TSRPR5 (Metrical Stability): In choosing the head of a time-span T , prefer a choice
that results in more stable choice of metrical structure

(Lerdahl and Jackendoff, 1983, p. 165)

These rules require information from later processes, such as time-
span/prolongational reductions, to be sent back to the earlier processes. To
automatically estimate the optimal parameters, we have to evaluate the level of
time-span tree stability derived using the ATTA. We use GPR7 and TSRPR5 for
calculating the level of stability. Figure 9.9 shows the process flow of the FATTA,
which consists of the ATTA and a feedback loop by the GPR7 and TSRPR5.

9.6.1 Implementation of GPR7 with Tonal Pitch Space

GPR7 is the rule applied to the feedback loop between the time-span/prolongational
reduction and grouping structure analysis. This rule leads to a preference for a
grouping structure that results in more stable time-span and/or prolongational reduc-
tions. The term DGPR7 indicates the degree of being a head by GPR7, which varies
continuously between 0 and 1. We define DGPR7 as

DGPR7 = ∑
i

distance(p(i),s(i))× size(i)2/
∑

i
size(i)2 , (9.12)

where i indicates the head of the time-span, which has primary and secondary
branches denoted by p(i) and s(i), respectively. The distance(x,y) indicates the
distance between notes x and y in the tonality of the piece, which is defined according
to Lerdahl’s (2001) theory of tonal pitch space. We normalized the distance from 0 to
1. The size(i) indicates the length of the time-span that has head i. When calculating
DGPR7, we use the square of size(i) for weightings for empirical reasons.

9.6.2 Implementation of TSRPR5

TSRPR5 is the rule applied to the feedback loop between the time-span reduction
and the metrical structure analyser. This rule leads to a preference that results in a
more stable choice of metrical structure in choosing the head of a time-span. The
term DTSRPR5 indicates the strength of the rule in a given instance, which varies
continuously between 0 and 1. We define DTSRPR5 as

DTSRPR5 =
1

∑
i

size(i)2

{
size(i)2, if dot(p(i))≥ dot(s(i)) ,
0, otherwise , (9.13)

where dot(x) indicates the number of metrical dots for note x.
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Fig. 9.9 Processing flow of fully automatic time-span tree analyser

9.6.3 Optimization of Adjustable Parameters

The optimal parameter sets of the ATTA can be obtained by maximizing the average
of DGPR7(0 ≤ DGPR7 ≤ 1) and DTSRPR5(0 ≤ DTSRPR5 ≤ 1). Because there are 46
adjustable parameters, e.g., Srules or Wm, it takes a long time to calculate all the
combinations of parameter sets. To decrease the calculation time, we constructed the
following algorithm:

1. Maximize the average of DGPR7 and DTSRPR5 by changing a parameter from
minimum to maximum.

2. Repeat 1 for all parameters.
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3. Iterate 1 and 2, as long as the average of DGPR7 and DTSRPR5 is increased from
the previous iteration.

Finally, the FATTA can output only one analysis result without manual configura-
tion. The computation time depends on the piece. In our experiment, described in
Sect. 9.11, the shortest piece took about 5 minutes to analyse and the longest took
about one week.

9.7 σGTTM Analyser

Our σGTTM system can detect the local grouping boundaries in a GTTM analysis
by combining GTTM and statistical learning with a decision tree (Miura et al., 2009).
A decision tree is a statistical learning method in which decisions are made by
considering the value of each ramification. When learning the decision tree, bigger
ramifications have a greater influence on the decision-making process, which causes
it to be closer to the root position.

9.7.1 Abstraction of Training Data

As training data, we selected 100 MusicXML files that were then manually analysed
by a musicologist and checked by GTTM experts. The value we want to know
is the existence of a local grouping boundary (denoted as b), so that the value
can be represented as 1 or 0 (boundary exists or not). A local GPR such as GPR
2 or 3 should also be abstracted because whether there is a boundary or not is
determined by the local GPR. Considering that there is a local GPR for avoiding
groups consisting of single notes, not only interval n (between note n and note n+1)
but also the neighbouring intervals (interval n− 1 and interval n+ 1) should be
checked. Therefore, the data were abstracted in the form, Bn

GPR, where the superscript
n refers to the nth interval and the subscript GPR means the type of local GPR, of
which there are six (2a, 2b, 3a, 3b, 3c, 3d). The abstracted data for interval n can thus
be denoted by Bn

2a, Bn
2b, Bn

3a, Bn
3b, Bn

3c, Bn
3d . Considering the neighbouring intervals,

the total abstracted data can be represented by 18 (= 6 rules× 3 (n− 1,n,n+ 1))
elements. Each element has a value of 1 or 0 (rules exist or not). The existence of a
local grouping boundary (b) is determined on the basis of these 18 elements.

9.7.2 Detecting the Priority of Local GPRs Using a Decision Tree

We chose C4.5, an algorithm developed by Quinlan (1993), to construct the decision
tree. Figure 9.10 shows an example of the constructed decision tree. From the training
data, we can obtain the conditional probability of local grouping boundaries for each
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Fig. 9.10 Example of con-
structed decision tree 10
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combination of local GPRs. When this conditional probability is 0.5 or more, GTTM
detects the existence of a local grouping boundary (b = 1), and when it is less than
0.5, no boundary is detected (b = 0). For the example in Fig. 9.10, we detect a local
grouping boundary when Bn

2a = 1 and Bn
2b = 1.

Unfortunately, the performance of the σGTTM analyser is not good enough
because it can construct only one decision tree from 100 fragments of a piece and
grouping analysis data, and it sometimes outputs irrelevant results.

9.8 σGTTM-II Analyser

We therefore developed the σGTTM-II analyser, based on the assumption that a
piece of music has multiple interpretations; thus, it constructs multiple decision trees
(each corresponding to a different interpretation) (Kanamori and Hamanaka, 2014).

The main idea with the σGTTM-II analyser is to reiterate clustering and statistical
learning to classify each piece of music on the basis of the priority of the local
GPR and to detect the local grouping structure more appropriately and easily. This
analyser classifies a set of piece of music into clusters and outputs one detector of
local grouping structure per cluster. We can detect a local grouping boundary more
easily by choosing the most favourable detector from among various candidates.

First, we randomly classify training data into clusters. The training data of each
cluster is then trained by a decision tree. After this training, a decision tree of GPR
priority is constructed. We refer to this constructed decision tree as the “detector”. In
Fig. 9.11, clusters and detectors A and B mean that detector A is constructed in cluster
A, detector B is constructed in cluster B, and so on. However, this part is problematic
because an irrelevant analysed music structure might exist in a cluster. This is due to
the detectors of each cluster representing the features of the entire music structure as
the same for each cluster.

To solve this problem, the analyser evaluates the performance of each detector as it
is constructed and then reclassifies the training data into clusters that generate the best
performing detector. In Fig. 9.11, the clusters after reclassification are represented
as A′, B′, and so on. The analyser then compares the training data of each cluster
before (A,B, . . .) and after (A′,B′, . . .) reclassification. The less the training data in
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Fig. 9.11 Iterations of clustering and statistical learning

the cluster change, the more the constructed detectors cover the features such as
priority of the local GPRs of all training data in the cluster.

After this comparison between clusters, if the total difference of training data in
clusters before and after reclassification is more than two, the analyser returns to
constructing detectors again, and if the total difference is less than one, or if reclassi-
fication has been performed 150 times, it outputs the training data and detectors of
each cluster. Finally, we construct the most appropriate detector on the basis of the
priority of the local GPRs of the entire training data in a cluster.

In our experiment in Sect. 9.11, we changed the initial number of clusters from 1
to 100 in order to compare the performance.

9.9 Interactive GTTM Analyser

We propose an interactive GTTM analyser that can use either the ATTA or σGTTM-II
analyser (Fig. 9.12). We should point out that there is a trade-off relationship between
the automation of the analysis process and variation in the analysis results (Fig. 9.13).
Figure 9.14 shows an overview of our interactive GTTM analyser consisting of the
ATTA/σGTTM-II analyser, GTTM manual editor, and GTTM process editor.

9.9.1 Manual Editor for GTTM

In some cases, ATTA may produce an acceptable result that reflects the user’s inter-
pretation, but in other cases it may not. A user who wants to change the analysis result
according to his or her interpretation can use the GTTM manual editor. This editor
has numerous functions including loading and saving the analysis results, calling the
ATTA or σGTTM-II analyser, recording the editing history, undoing the editing, and
autocorrecting incorrect structures.
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Fig. 9.12 Interactive GTTM analyser

Fig. 9.13 Trade-off between
automation of analysis process
and variation of analysis
results
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9.9.2 Process Editor for GTTM

The analysing process with the ATTA and GTTM manual editor is complicated,
and sometimes a user may become confused as to what he or she should do next,
since there are three analysing processes in the ATTA and five editing processes in
the GTTM manual editor. A user may iterate the ATTA and manual edit processes
multiple times.

To solve this problem, we propose a GTTM process editor that presents candidates
for the next process of analysis. A user can change the process simply by selecting
the next process. The process editor enables seamless change in the analysis process
by using the ATTA and, in the manual edit process, by using the GTTM manual
editor, representing candidates for the next process of analysis. The representation
method differs depending on the number of candidates for the next process.

Fig. 9.14 Overview of interac-
tive GTTM analyser
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Fig. 9.15 Two types of so-
lution for broken grouping
structure

When there are multiple candidates, the process controlling function automati-
cally opens the popup menu and shows the candidates. For example, if there is a
grouping structure, as shown Fig. 9.15(a), and a user deletes a group at the upper left
(Fig. 9.15(b)), the grouping structure of Fig. 9.15(b) is broken because GWFR3 does
not hold. The GWFR3 has the constraint that a group must contain smaller groups.
There are only two processes for solving this problem:

• Delete all the groups at the same level of the deleted group (Fig. 9.15(c)).
• Extend the group following the deleted group to the left (Fig. 9.15(d)).

The next process can then be executed depending on which of the two processes
displayed in the popup menu the user selects.

9.9.3 Implementation on Client-Server System

The ATTA and σGTTM-II are updated frequently, and sometimes it is a little difficult
for users to download an updated program. We therefore implement our interactive
GTTM analyser on a client-server system. The graphic user interface on the client
side runs as a Web application written in Java, while the analyser on the server side
runs as a program written in Perl. This enables us to update the analyser frequently
while allowing users to access the most recent version automatically.

9.10 GTTM Database

In constructing a musical analyser, test data from musical databases are useful for
evaluating and improving the performance of the analyser. At present, we have
a database of 300 analyses that are being used for researching music structural
analysis (Hamanaka et al., 2014). At this stage, several rules in the theory allow
only monophony, so we restrict the target analysis data to monophonic music in the
GTTM database.
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9.10.1 XML-Based Data Structure

We use an XML format for all analysis data. MusicXML was chosen as the primary
input format because it provides a common exchange format for music notation, anal-
ysis, retrieval, and other applications (Recordare, 2011). We designed GroupingXML
(XML format for grouping structure), MetricalXML (XML format for metrical struc-
ture), TimespanXML (XML format for time-span tree), and ProlongationalXML
(XML format for prolongational tree) as the export formats for our four proposed
analysers. We also designed HarmonicXML to express the chord progressions. The
XML format is suitable for expressing the hierarchical grouping structures, metrical
structures, time-span trees, and prolongational trees.

9.10.2 Score Data

The database should contain a variety of different musical pieces. When constructing
it, we used 8-bar excerpts from whole pieces of music because the time required for
analysing and editing by a musicology expert would be too long if whole pieces had
to be analysed. We collected 300 monophonic 8-bar excerpts from classical music
that included notes, rests, slurs, accents, and articulations entered manually with the
Finale music notation software (MakeMusic, 2015). We exported the MusicXML
using the Dolet plug-in.3 The 300 whole pieces and the 8-bar segments were selected
by a musicologist.

9.10.3 Analysis Data

We asked an expert musicologist to analyse manually the score data in a way that was
faithful to GTTM by using the manual editor in the GTTM analysis tool to assist in
editing the grouping structure, metrical structure, time-span tree, and prolongational
tree. She also analysed the chord progression. Three other experts cross-checked
these manually produced results.

9.11 Experimental Results

In this section, we compare the performance of our four analysers and show examples
of the analysis results.

3 http://www.musicxml.com/dolet-plugin/dolet-6-plugin-for-finale/
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Fig. 9.16 Analysis of
Mozart’s Sonata K 331

Analysis result

Analysis result

GPR GPR GPR

GPR GPR GPR

9.11.1 Analysis by ATTA

There are at least two plausible grouping structures for the main theme from Mozart’s
Sonata K 331: a structure that has a boundary between notes 4 and 5 (Fig. 9.16(a));
or one in which there is a boundary between notes 5 and 6 (Fig. 9.16(b)). The
analyser can output either of these grouping structures by using exGTTM with
appropriate values for the strengths of grouping preference rules such as SGPR2a,
SGPR2b, and SGPR3a. In Fig. 9.16, T low, where 0≤ T low≤ 1, is an adjustable parameter
for the threshold in the low-level grouping boundary and Blow(i) is a local strength,
represented by a real number between 0 and 1, defined so that the larger this value is,
the more likely the boundary is.

Figure 9.17 shows the analyses of two pieces, Beethoven’s “Turkish March”
and the traditional English folk song “Greensleeves”, that were set with the same
parameters. The numbers at the nodes in the tree in Fig. 9.17 indicate the applicable
rules. The parameters of ATTA are configured by hand, because the optimal values
of the parameters depend on a piece of music.

9.11.2 Comparison of ATTA and FATTA

We evaluated the performance of ATTA and FATTA using an F-measure given by the
weighted harmonic mean of precision P (proportion of selected groupings/dots/heads
that are correct) and recall R (proportion of correct groupings/dots/heads that are
identified). In calculating the F-measure of the grouping analyser and time-span tree
analyser, we did not consider the possibility that a low-level error is propagated up
to a higher level; we counted wrong answers without regard to the differences in
grouping levels and time-span levels.

The grouping, metrical, and time-span tree structures will change depending on
the adjustable parameters. To evaluate the baseline performance of ATTA, we used
the following default parameters: Srules = 0.5, Trules = 0.5, Ws= 0.5, Wr = 0.5, Wl =
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0.5, and σ= 0.05. The parameter range of Trules, Ws, Wr, and Wl was 0 to 1.0 and the
resolution was 0.1. The parameter range of σ was 0 to 0.1 and the resolution was
0.01 (see Table 9.1).

On average, it took about 10 minutes per piece to find a tuning for the set of param-
eters (Table 9.1). As a result of configuring the parameters, each F-measure of ATTA
outperformed the baseline. After automatic parameter optimization, FATTA achieved
average F-measures of 0.48 for grouping structure, 0.89 for metrical structure and
0.49 for time-span tree (see Table 9.2). FATTA thus outperformed the baseline of
ATTA, but did not perform as well as ATTA when the latter’s parameter values were
configured by hand.

9.11.3 Number of Clusters in σGTTM-II Analyser

When we first classify each piece of music into clusters, we do not know the optimum
number of clusters for producing the best performance of the σGTTM-II analyser.

Fig. 9.17 Analysis of two pieces having same parameter sets: (a) Beethoven, “Turkish March”, (b)
English Traditional, “Greensleeves”
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Table 9.1 Adjustable parameters

Structure Parameter Description

Grouping structure SGPR j The strength of each grouping preference rule.
j ∈ {2a,2b,3a,3b,3c,3d,4,5,6}

σ The standard deviation of a normal distribution for
GPR5.

Ws Preference weighting for end of a parallel segment
in favour of the start
of a parallel segment.

Wr Preference weighting of same rhythm in favour of
the same register in
parallel segments.

Wl Preference weighting for larger parallel segments.
T GPR4 The value of the threshold that decides whether

GPRs 2 and 3 are
relatively pronounced or not.

T low−level The value of the threshold that decides whether
transition i is a
low-level boundary or not.

Metrical structure SMPR j The strength of each metrical preference rule.
j ∈ {1,2,3,4,5a,5b,5c,5d,5e,10}

Wr Preference weighting for same rhythm in favour of
same register in
parallel groups.

T MPR j The value of the threshold that decides whether or
not each rule is
applicable. j ∈ {4,5a,5b,5c}

Time-span tree STSRPR j The strength of each time-span tree preference rule.
j ∈ {1,3a,3b,4,8,9}

Therefore, we first tested the system with the number of clusters ranging from 1 to
100. This means the number of input clusters of the σGTTM-II analyser is one and
the analyser outputs one detector, and then the number of input clusters is two and
the analyser outputs two detectors, and so on. Thus, the analyser runs 100 times
through the input and output. On each run, the analyser reiterates clustering and
statistical learning multiple times until it is ready to output detectors. The results of
this experiment are shown in Fig. 9.18.

Table 9.2 F-measures of
ATTA and FATTA

Baseline ATTA FATTA
of ATTA

Grouping structure 0.46 0.77 0.48
Metrical structure 0.84 0.90 0.89
Time-span tree 0.44 0.60 0.49



9 Implementing Methods for Analysing Music Based on GTTM 245

Fig. 9.18 Performance of
σGTTM-II analyser
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9.11.4 Comparison of ATTA, σGTTM Analyser, and σGTTM-II
Analyser

We compared σGTTM-II with the ATTA and σGTTM analysers. The performance
of the σGTTM-II analyser was highest when the number of clusters was 10. The
σGTTM-II analyser outperformed the ATTA with adjusted parameters and the
σGTTM analyser when it came to selecting the optimum detector (Table 9.3).

9.11.5 Comparison of Analysis Results from Two Musicologists
with GTTM Database

Another musicologist who had not been involved in the construction of the GTTM
database was asked to manually analyse the 300 scores in the database in a way that
was faithful to GTTM. We provided her with only the 8-bar-long monophonic pieces
but allowed her to refer to the original score as needed. When analysing pieces of
music, she could not see the analysis results already in the GTTM database. She was
told to take as much time as she needed. The time needed for analysing one song
ranged from fifteen minutes to six hours.

The analysis results for 267 of the 300 pieces were the same as the original results
in the GTTM database. The remaining 33 pieces had different interpretations, so we
added 33 new analysis results to the GTTM database after they were cross-checked
by three other experts.

For those 33 pieces with different interpretations, we found the grouping structure
in the database to be the same as that obtained by the musicologist. For all 33 pieces,
in the time-span tree, the root branch and branches directly connected to the root

Table 9.3 Performance com-
parison of ATTA, σGTTM
analyser, and σGTTM-II
analyser

Precision Recall F-measure
ATTA 0.78 0.79 0.77
σGTTM 0.76 0.63 0.69
σGTTM-II 0.91 0.73 0.81



246 Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo

branch in the database were the same as those in the musicologist’s results. In other
words, only some branches were different in both analyses.

Of the pieces analysed, one of Johann Pachelbel’s fugues in C major had the most
unmatched time-spans when the analysis results in the GTTM database (Fig. 9.19(a))
were compared with those from the musicologist (Fig. 9.19(b)). From yet another
musicologist, we obtained the following comments about different analysis results
for this piece of music.

Analysis results from GTTM database In analysis result (a), note 2 was in-
terpreted as the start of the subject of the fugue (Fig. 9.19(a)). Note 3 is
more salient than note 2 because note 2 is a non-chord tone. Note 5 is the
most salient note in the time-span tree of the first bar because notes 4 to 7
are a fifth chord and note 5 is a tonic of the chord. The reason that note 2
was interpreted as the start of the subject of the fugue is uncertain, but a
musicologist who is familiar with music before the Baroque era should be
able to see that note 2 is the start of the subject of the fugue.

Analysis results from musicologist Analysis result (b) was a more simple
interpretation than result (a), in which note 1 is the start of the subject of
the fuga. However, it is interesting that the trees of the second and third
beats of the third bar are separated because both are the fifth chord.

The musicologist who made this comment said that it is difficult to analyse a
monophonic piece of music from a contrapuntal piece of music without seeing the
other parts. Chord information is necessary for a GTTM analysis, and a musicologist
who is using only a monophonic piece of music has to imagine the other parts, which
can result in multiple interpretations.

9.12 Conclusion

We have described our efforts to develop computer implementations of analytical
methods based on music theory. By introducing full parameterization and statistical
learning, we were able to improve the performance of our analysers. However, a few
problems still remain. For example, none of our analysers can automatically analyse
polyphonic music, which consists of several independent parts (Hamanaka et al.,
2013). We plan to address this problem in future versions of the analyser.

The GTTM database contains analysis data for 300 monophonic pieces. However,
the manual editor in our interactive GTTM analyser is designed to deal with poly-
phonic pieces. Although the analyser works only on monophonic pieces, a user can
analyse polyphonic pieces by using the analyser’s manual editor to divide polyphonic
pieces into monophonic parts. We also attempted to extend the GTTM framework
to enable the analysis of polyphonic pieces. We plan to publicize 100 pairs of poly-
phonic scores and the analysis results of the musicologists consulted in this study.
Although the 300 pieces in the current GTTM database are only eight bars long, we
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Fig. 9.19 Time-span trees of one part from a fugue in C major by Johann Pachelbel

plan to also analyse whole pieces of music by using the interactive GTTM analyser’s
slide bar for zooming piano-roll scores and GTTM structures.

Supplementary Material The interactive GTTM analyser and GTTM database are available online
at http://www.gttm.jp/.
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