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Abstract. We propose an automatic analyzer for acquiring a time-span
tree based on the generative theory of tonal music (GTTM). Although
analyzer based on GTTM was previously proposed, it requires manu-
ally tweaking the 46 adjustable parameters on a computer screen in or-
der to analyze them properly. We reformalized the time-span reduction
in GTTM based on a statistical model called probabilistic context-free
grammar, which enables us to acquire the most probabilistic time-span
tree. We applied leave-one-out cross validation using three hundred sets
training data, which revealed that our analyzer outperformed the previ-
ous one.

Keywords: A generative theory of tonal music (GTTM), probabilistic
context-free grammar (PCFG), time-span tree.

1 Introduction

This paper describes a method for automatic generation of a time-span tree
based on the generative theory of tonal music (GTTM) [1]. The main advantage
of our method is that it is based on probabilistic context-free grammar (PCFG)
[2], and we can therefore acquire a model that enables us to generate a time-span
tree by statistically learning training data that has been analyzed manually by
a musicologist.

Generally, a piece of music will have more than one interpretation, and deal-
ing with such ambiguity is a major obstacle when implementing a music theory
on a computer. A statistical model is suitable for constructing a music ana-
lyzer that allows such ambiguity. In other words, when we introduce a statistical
model in a musical analyzer, we can compare the likelihood of one interpreta-
tion to other interpretations. One such probabilistic model we introduce here is
PCFG, which is used for syntactic analysis of natural language.

PCFG consists of multiple rules, and each rule has a probability. The prob-
ability of a sentence is derived from multiplications of probabilities of applied
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rules for generat-ing the sentence. Finding a rule set that can generate the sen-
tence is called ”parsing,” and a tree structure that indicates the parse result is
called a ”parse tree.”

The time-span tree is a result of analyzing GTTM, which is a binary tree in
each leaf connecting a note lined in time order. Each middle node between roots
and leaves has labels that indicate which note is salient between two notes that
connect directly to the node. Therefore, a time-span tree can acquire a reduction
melody by omitting non-salient notes.

In this study, we regard the time-span tree as a parse tree of a melody.
We can generate a melody by using PCFG. Then, the reduction process is an
inverse problem of the generation. We first set 645 PCFG rules and learned
the generation probabilities of the rules by using training data that had been
analyzed manually by a musicologist. Then we calculated the total probability of
each parse tree of all the well-formed time-span trees and selected the maximum
one as the most appropriate time-span tree to solve the inverse problem.

We applied leave-one-out cross validation using 300 sets of training data. The
results indicated an average accuracy of 0.76, which outperformed the previous
GTTM analyzer.

2 Related work

We briefly look back at the history of cognitive music theory. The implication-
realization model (I-R model) proposed by Eugene Narmour abstracts and ex-
presses music according to symbol sequences from information from a musical
score [3, 4]. Recently, the IRM has been implemented on computer and can be
used to acquire the chain structures of I-R model from a score [5]. In contrast,
Schenkerian analysis is used to analyze the deeper structures called Urlinie
(fundamental line) and Ursatz (fundamental structure) from the music sur-
face [6]. Short segments of music can be analyzed using Schenkerian analysis
on a computer [7]. Another approach constructs a music theory for computer
implementation [8, 9].

The main advantage of analysis by GTTM is that it can acquire the tree
structures called time-span and prolongation trees. The time-span or prolonga-
tion tree provides a summarization of a piece of music, which can be used as the
representation of an abstraction, resulting in a music retrieval system [10]. It can
also be used for performance rendering [11] and reproducing music [12]. Addi-
tionally, the time-span tree can be used for melody prediction [13] and melody
morphing [14].

Some other studies have applied PCFG to analyze music, for example, chord
analysis for jazz [15], analysis of the metrical structure [16], and automatic tran-
scription [17]. These studies [Granroth 2012,Tanji 2008,Kameoka 2012] show the
usefulness of using PCFG in musical analysis. Actually, the GTTM [1] has a
concept of generation that is also expressed in the title. However, no one has
yet regarded a time-span tree as a parse tree or estimated the most probabilistic
time-span tree.
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σGTTM III: Learning based Time-span Tree Generator based on PCFG 3

We constructed four types of GTTM analyzers: ATTA, FATTA, σGTTM,
and σGTTMII. We extended the original theory of GTTM with a full exter-
nalization and parameterization and proposed a machine-executable extension
of the GTTM called exGTTM [18]. The externalization includes introducing an
algorithm to generate a hierarchical structure of the time-span tree in a mixed
top-down and bottom-up manner, and the parameterization includes introduc-
ing a parameter for controlling the priorities of rules in order to avoid conflict
among the rules, as well as parameters for controlling the shape of the hierarchi-
cal time-span tree. We implemented exGTTM on a computer called the ATTA
(automatic time-span tree analyzer), which can output multiple analysis results
by configuring the parameters.

Although the ATTA has adjustable parameters for controlling the weight or
priority of each rule, these parameters have to be set manually. This takes a long
time because finding the optimal values of the settings themselves takes a long
time. We discuss the problem of ATTA in detail in 3.3.

The FATTA (full-automatic time-span tree analyzer) can automatically es-
timate the optimal parameters by introducing a feedback loop from higher-level
structures to lower-level structures on the basis of the stability of the time-span
tree [19]. The FATTA can output only one analysis result without manual con-
figuration. However, the FATTA performance is not good enough for analyzing
time-span trees.

We also developed σGTTM, a system that can detect the local grouping
boundaries in GTTM analysis, by combining GTTM with statistical learning
[20]. The σGTTM system statistically learns the priority of GTTM rules from
100 sets of score and grouping structure data analyzed by a musicologist; it does
this by using a decision tree. Its performance, however, is insufficient because
it can construct only one decision tree from 100 data sets and cannot output
multiple results.

The σGTTM II system assumes that a piece of music has multiple interpre-
tations, and thus, it constructs multiple decision trees (each corresponding to
an interpretation) by iteratively clustering the training data and training the
decision trees. The performance of the σGTTM II system outperformed both
the ATTA and σGTTM systems [21]. However, σGTTM and σGTTM II are
only suitable for grouping structures and cannot acquire time-span trees.

3 Time-span reduction and its implementation problem

We use the grouping and metrical structures of music to derive a time-span
tree. The grouping structure is intended to formalize the intuitive belief that
tonal music is organized into groups that are in turn composed of subgroups.
These groups are graphically presented as several levels of arcs below a music
staff. The metrical structure describes the rhythmic hierarchy of the piece by
identifying the position of strong beats at different levels such as those of a
quarter note, half note, a measure, two measures, and four measures. Strong
beats are illustrated as several levels of ”dots” below the musical staff. The
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time-span tree is a binary tree, which is a hierarchical structure describing the
relative structural importance of notes that differentiate the essential parts of
the melody from the ornamentation (Fig. 1). For example, the left side of Fig. 2
depicts a simple melody and its tree. The time-span (designated as ¡—¿) is
represented by a single note, called a head, which is designated here as ”C4.”
In the tree, the essential notes are connected to a branch nearer to the root of
the tree. In contrast, the ornamentation notes are connected to the leaves of
the tree. In a separation, we hereafter call the branch ”primary” and the leaf
”secondary” (Fig. 3).

Time-span Tree

Metrical Structure

Grouping Structure  

Fig. 1. Time-span tree, metrical structure, and grouping structure.



Instantiating            Abstracting

<---->







C4 C4 

head

Fig. 2. Subsumption relation of melodies.

 

Primary (salient) branch

Secondary (nonsalient) branch

Parent �me-span

Primary 
�me-span

Secondary
�me-span

Fig. 3. Primary and secondary time-span trees.
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3.1 Time-span segmentation

Before the time-span reduction, the time-span segmentation divides the entire
piece into hierarchical time-spans. We show the division procedure in Fig. 4,
which involves the following steps:

1. Regard all of the resultant groups of grouping analysis as time-spans.

2. Divide a time-span into two at the strongest beat when a time-span in the
lowest level includes more than one note.

3. Repeat 2 recursively.

In [1], there are two rules for time-span segmentation, which are called seg-
mentation rule 1 and segmentation rule 2. The former corresponds to the first
item and the latter to the second item.

 

Fig. 4. Time-span segmentation.

3.2 Time-span reduction

As a result, a music piece is formed into a binary tree, at each node of which the
more important branch extends upward as a head note. The selection of a head
at each node is hierarchically computed from the lower level. Therefore, heads
are selected from leaves to root branches.

Nine rules are defined for the time-span reduction preference rules that indi-
cate superiority of one tree over another. These rules consist of local rules and
broad rules.

For example, both TSRPR1 and TSRPR5 are rules related to the metrical
structure. However, TSRPR1 is a local rule, and TSRPR5 is a more global rule.
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� �
TSRPR1 (Metrical Position) Of the possible choice for head of a time-

span tree T, prefer a choice that is in a relatively strong metrical posi-
tion.

TSRPR5 (Metrical Stability) In choosing the head of a time-span T,
prefer a choice that results in a more stable choice of metrical structure.

� �
The biggest problem when implementing time-span reduction on computer

is that there is little information on how to combine local and broad rules and
how to construct hierarchical time span trees.

3.3 Problems of time-span reduction in ATTA

In the ATTA we introduced adjustable parameters for control the strength of
each rule of time-span preference rule in order to overcome the problem in 3.2.
A hierarchical time-span tree is constructed by iterating the calculation of the
plausibility of the head for the current heads and choosing the next level heads
(Fig. 5).

D
timespan

(i) [i]

D
timespan

(i) [i]

D
timespan

(i) [i]

.

.

.

Fig. 5. Selecting the next-level heads in the time-span reduction.
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σGTTM III: Learning based Time-span Tree Generator based on PCFG 7

However, the performance of time-span reduction in ATTA was not suffi-
cient. We investigated some pieces of music for which the time-span reduction
performance was not very good, and the results indicated that many of them
had a weak beat becomes a head (primary) near the leaves of the tree and a
strong beat becomes a head near the root of the tree (Fig. 6). In other words,
the ATTA cannot perform well in songs where the important rules are different
depending on the branching which is near the leaves or the root of the tree.

We can consider two ways of solving this problem. The first one is to introduce
a more adjustable parameter that enables us to control the strength of rules at
each level of the time-span. However, this idea is not practical because it is
difficult to adjust each parameter manually. The second way is described in the
next section.

Strong beat becomes a head
Weak beat becomes a head

& ### 42 œ œ œ œ# œ œ. œ œ œ .œ Jœ .œ Jœ œ œ œ# œ œ# œ. œ œ œ œ œ œ œ œ Jœ ‰

Fig. 6. Example of a piece that is not good performance.

4 σGTTMIII: Learning based time-span tree generator

The time-span tree can extract an abstracted melody by reducing ornamentation
notes. An example of time-span reduction is shown in Fig. 7. The time-span tree
in the figure is from melody A, which embodies the results of GTTM analyses.
We can obtain an abstracted melody B by slicing the tree in the middle and
omitting notes that are connected to branches under line B. In the same manner,
if we slice the tree higher up at line C, we can get a more abstracted melody C.

If we apply this reduction process in the inverse direction, we can use it as a
generation process as follows (Fig. 8).
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Fig. 7. Time-span reduction.

& bbb œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

& bbb œ œ œ œ œ œ œ œ

& bbb ˙
˙ ˙ ˙

& bbb w w
& bbb w w

 

Fig. 8. Generation process of note sequence.

1. Identify the note in which the time-span (length) is the same as the whole
piece of music.

2. Separate the time-span of the note and make a primary note and a secondary
note.

3. Repeat 2 recursively to the leaves of the tree.

By expressing the above generation process using a probabilistic model, we can
acquire the most probabilistic time-span tree.

4.1 Training data

The training data we used for the probabilistic model was a musical structural
database based on GTTM that we constructed [1].

We collected 300 8-bar-long monophonic classical music pieces that included
notes, rests, slurs, accents, and articulations entered manually using music no-
tation software called ”Finale” [23]. We exported the MusicXML by using a
plugin called ”Dolet.” The 300 whole pieces and the 8 bars were selected by a
musicologist.
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σGTTM III: Learning based Time-span Tree Generator based on PCFG 9

We asked a musicology expert to manually analyze the score data faithfully
with regard to the GTTM by using the manual editor in the GTTM analysis tool
(Fig. 9) in order to assist in editing the grouping structure, metrical structure,
and time-span tree. Three other experts crosschecked these manually produced
results.

The analyzer and database can be downloaded at http://www.gttm.jp/

 

Fig. 9. Interactive GTTM analyzer.

4.2 PCFG model for generating time-span tree

We introduce here a probabilistic context-free grammar (PCFG), which we used
to construct a probabilistic generation model of a melody. The PCFG has mul-
tiple generation rules with probabilities that can represent the separation of
primary and secondary notes in each node of a time-span tree.

The PCFG of G can be defined by a quintuple:

G = {T,M, S,R, P} (1)

where T is the set of terminal symbols, M is the set of non-terminal symbols, S is
the start symbol, R is the set of production rules, and P is the set of probabilities
on generation rules.

T : terminal symbols. Notes are the terminal symbols.
M : non-terminal symbols. Time-spans are the non-terminal symbols.
S : start symbol. The start symbol of PCFG for generating a time-span tree

is the length of an entire piece of music without any rests, which means the
length of the time-span of the whole piece.
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R: production rules. There are two kinds of production rules. The first kind
involves a time-span from which two time-spans are generated. We call this
rule the time-span separation rule. The sum of the length of two time-spans
is the same as the length of the original time-span. There are several ways
to generate two time-spans from one time-span. The second kind of rule
involves a time-span to generate a note, which we call the note generation
rule. The length of the original time-span and the length of the generated
note are the same (Fig. 10).

P : probabilities of generation rules. Each production rule has a probabil-
ity. For example, the probability of generating a time-span that has the
length of 32nd generate 32nd note is almost 1.00. On the other hand, the
probability of generating a time span that has the length of a double note
generate double note is almost 0.00 because there are many other production
rules for a double note (Fig. 10).

Produc�on Rules Probability

Time-span 

Separa�on rules   

   

  

0.35

0.12

0.62

Note genera�on 

rules
   



 

0.01

0.44

0.99

...

...

...

...

...

...

...



...

...

...

Fig. 10. Example of production rules and its probabilities.
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4.3 Design rules of PCFG for generating time-span tree

We have so far only discussed the length of a note in the basic PCFG model
described in 4.2. Other relevant information is as follows.

Primary and secondary. When two time-spans are generated according to
the generation rules, one is assigned as a primary time-span and the other
is assigned as a secondary time-span.

Pitch. When the primary and secondary time-spans are generated, the primary
pitch will inherited and second pitch will generated.

Order of time-spans. There are two orders when primary and secondary time-
spans are generated. In one, the primary time-span is generated before the
secondary time-span. In the other, the secondary time-span is generated be-
fore the primary time-span.

Numbers of dots. As described in 3.2, the metrical structure strongly affects
the generation of the time-span. Therefore, the numbers of dots in the pri-
mary and secondary time-spans should be included in the model.

Use of the above information in the naive implementation of the rules of
PCFG results in too many rules, and the probability of most of them is zero
because we have limited numbers of training datasets. We solve this problem of
space training data by abstracting the rules as follows.

3 types of pitch change. We graded the changes in pitch of primary and sec-
ondary time-spans as up, down, or the same.

7 types of duration ratio. We graded the length ratio of primary and sec-
ondary time-spans as one closest to the 4 times, 3 times, 2 times, 1 time,
1/2 time, 1/3 time, and 1/4 time.

2 orders of time-spans. One order is that the primary time-span is before the
secondary; the other is that the secondary time-span is before the primary.

3 types of numbers of dots. We graded the dots of primary and secondary
time-spans in three groups: primary has many dots, secondary has many
dots, and primary and secondary have the same number of dots.

5 types of head time-span length. We graded the length of the time-span
before separating it into primary and secondary as the one closest to six-
teenth, eighth, quarter, half, whole, and double time.

We established 645 PCFG rules in total, which consist of 630 (=3x7x2x3x5)
time-span separation rules and 15 (=3x5) note generation rules.

4.4 Generation of time-span tree by using PCFG

The probability of each PCFG rule was achieved using supervised learning by
counting 19,296 nodes of 300 time-span trees in our database. Then we were
able to obtain the most probabilistic time-span tree by calculating the total
probability of each parse tree of all the well-formed time-span trees and selecting
the maximum one (Fig. 11).
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Generating all the well-formed time-span trees requires substantial comput-
ing time because the combinations of trees increase exponentially when the num-
bers of notes increase. To reduce the computing time, we parallelized eight pro-
cesses for generating time-span trees for each piece of music. By using the PCFG,
we needed three weeks to acquire plausible time-span trees of 100 pieces of mu-
sic in the GTTM database using a PC cluster (16 machines of Intel Xeon E5-
2430@2.00 GHz 12core). The computing time depended on the musical pieces;
the longest was two weeks, and the shortest one was two minutes.

Produc�on Rules Probability

Time-span 

Separa�on rules   

   

  

0.35

0.12

0.62

Note genera�on 

rules
   



 

0.01

0.44

0.99

...

...

...

...

...

...

...



...

...

...

Produc�on Rules of PCFG

Learning probabili�es

& bbbbbb 42 œ œ œn œ œ œ œ œ œn œ œb œ œ œn œ œ œ œ œ œ œ œ œ œ œ œ œn œ œ œ œ œ œn œ œb œ œ œn œ œ œ œ œ œ œ jœ ‰

& 42
p
œ œ .œ œ œ# œ œ œ .œ œ œ# œ œ œ .œ œ œ œ œ œ œ# œ œ œ .œ œ œ œ œ œ .œ œ œ# œ œ œ œ œ œ œ œ

Jœ ‰

GTTM databese

& bbbbbb 42 œ œ œn œ œ œ œ œ œn œ œb œ œ œn œ œ œ œ œ œ œ œ œ œ œ œ œn œ œ œ œ œ œn œ œb œ œ œn œ œ œ œ œ œ œ jœ ‰

300 pieces

Learning phase

Genera�ng phase

œ œ œ œ
Input melody

Calculate the       total probability

Generate all 

well-formed

�me-span 

trees

...

PC-cluster

0.01

0.04

0.07

0.25

0.10

0.08

0.11

œ œ œ œ

Most probabilis�c �me-span tree

Input grouping and metrical structures
(experiment in Sec. 5)

ATTA (metrical strucuture analysis)

σGTTMII (grouping structure analysis)

grouping and 

metrical structures

Fig. 11. Overview of GTTMIII.

5 Experimental results

We evaluated the performance of σGTTMIII by leave-one-out cross validation in
order to compare its accuracy with that of ATTA, a previously developed time-
span tree analyzer [18]. We used the same 100 pieces of music as used to evaluate
ATTA, and they were numbered from 1 to 100 in the 300-piece database. When
calculating accuracy, we did not consider the possibility that a low-level error
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σGTTM III: Learning based Time-span Tree Generator based on PCFG 13

would propagate up to a higher level; we counted wrong answers without regard
to the differences in time-span levels.

Accuracy =
Numbers of matched node in the time-span tree

Numbers of node in the time-span tree
(2)

The results of our experiments are given in Table 1. The ATTA has two kinds
of results because the accuracy of ATTA varies depending on its adjustable
parameters.

It took us an average of about 10 min per piece to find the plausible tuning for
the set of parameter. The σGTTMIII outperformed ATTA in average accuracy in
both the baseline and after tuning the parameters. The σGTTMIII outperformed
the baseline performance of ATTA for all the pieces. After the parameters were
tuned, the ATTA outperformed σGTTMIII in a few of the pieces.

Table 1. Accuracies of ATTA and GTTMIII.

Baseline ATTA with

performance configured σGTTMIII

Melodies of ATTA parameters

1. Moments Musicaux 0.71 0.84 0.88
2. Wiegenlied 0.54 0.69 0.78
3. Traumerei 0.50 0.63 0.84
4. Sinfonie Nr.9 d moll Op.125 4.Satz An die Freude 0.22 0.48 0.68
5. The Nutcracker Suite Op.71a No.8 Waltz of the Flowers 0.42 0.91 0.72

...
...

...

Total (100 melodies) 0.44 0.60 0.76

6 Conclusion

We described σGTTMIII, a time-span tree generator based on PCFG. We set
645 rules for generating time-spans and after carrying out supervised learning of
the rules of PCFG, the σGTTMIII outperformed ATTA, the previous time-span
tree analyzer, in average accuracy.

Some applications such as melody morphing or melody summarization re-
quire the use of a time-span tree [10–13]. However, such applications are not
practical because the accuracy of the previous time-span analyzer is not suffi-
cient and requires manual parameter tuning.

We plan to construct an application for automatic melody morphing or sum-
marization. We also plan to achieve un-supervised learning of rules to improve
the accuracy.
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