
MELODY EXTRAPOLATION IN GTTM APPROACH

Masatoshi Hamanaka

University of Tsukuba

hamanaka@iit.tsukuba.ac.jp

Keiji Hirata

NTT Communication Science

Laboratories

Satoshi Tojo

Japan Advanced Institute of

Science and Technology

ABSTRACT

We developed a melody-morphing method in which we

input melodies A and B and not only interpolate but also

extrapolate other melodies between those two melodies.

This is done in a systematic order according to a certain

numerical measure, based on the parameters which reflect

the influential features of two input melodies. The main

advantage of our method is that a time-span tree is used,

which is acquired from the music surface using a music

theory called Generative Theory of Tonal Music (GTTM).

By using our defined primitive operations of time-span trees,

we can manipulate melodies like numerical expressions.

1. INTRODUCTION

The purpose of this study is to construct an interactive

melody generator for professional as well as novice

composers. Because professional composers want to

reflect their intensions accurately, they want to lower the

abstraction level of the objects to manipulate the melody.

On the other hand, musical novices tend to raise the

abstraction level so as to handle the melody more easily.

Therefore, there are trade-off relationships, which are

difficult to satisfy both professionals and novices needs.

For example, commercial music sequence software only

operates on the surface structure of a melody, that is, the

pitch and note-on timing of each note, and thus it is

difficult for novices to generate melodies. On the other

hand, Mozart‟s “Musical Dice Games” [1] generates

agreeable melodies, even if a novice configures the

parameters. However, it is difficult to sufficiently reflect

the composers‟ intension.

To solve this trade-off problem, there is a framework,

in which a user indicates his or her intension by

representing an instance. For example, suppose that a user

intends to arrange melody A by adding some musical

flavor to it and he or she knows that melody B has such

taste. Then, if he or she could use a command such as "add

the nuance of melody B to melody A", he or she would be

able to accurately convey his or her intension to a system.

We call this operation, adding the nuance of melody B to

melody A, 'melody morphing'.

Figure 1 is the layout of our interactive melody

generator in which the melodies on the pop-up menu are

morphing result of a selected melody on the editing score

with another melody chosen by the user. We can play, copy,

paste, or displace the morphed melodies on the pop-up.

Figure 1. Interactive melody generator.

We have developed a melody-morphing method by

using a time-span tree, which is acquired from the music

surface using the Generative Theory of Tonal Music

(GTTM) [2]. The time-span tree is a binary tree, which is a

hierarchical structure describing the relative structural

importance of notes that differentiate the essential parts of

the melody from the ornamental notes.

Our previous melody-morphing method only generates

interpolative melodies and thus the variation of the output

melodies is small [6]. In interpolative melody C generated

from melody A and B, the similarity between A and C is

higher than that of A and B, and the similarity between B

and C is higher than that of A and B. On the other hand, in

extrapolative melody C from melody A and B, a melody B

is an interpolative melody of melodies A and C, or a melody

A is an interpolative melody of melodies B and C (Figure 2).

We propose a melody-morphing method, which enables

the extrapolation of melodies that generates melody C, which

emphasizes the character of melody A or melody B. As part

of this overall method, we devised a melody divisional

reduction and melody divisional augmentation methods to

reduce or increase the notes of melody A in the differential

branch of the time-span tree of melodies A and B.

(a) Interpolate melody (b) Extrapolate melody

Melody A Melody B

Interpolate

melody C

Melody A Melody B

♪ Sequence Software

Play（P） Ctrl+P

Paste（V） Ctrl+V

 Displace(R ）

 Ctrl+H

Copy（C） Ctrl+C

Extrapolate

melody C

Figure 2. Interpolative and extrapolative melodies.

2. GTTM AND MELODY MORPHING

Our melody morphing method uses time-span trees

acquired by analysing the results of the GTTM. Figure 3 is

an example of abstracting a melody by using a time-span

tree. There is a time-span tree from melody D, which

embodies the results of the GTTM analyses. The important

notes are connected to a branch nearer the root of the tree.

In contrast, the un-important notes are connected to the

leaves of the tree. We can obtain an abstracted melody E

by slicing the tree in the middle and omitting notes that are

connected to branches under line E. In the same manner, if

we slice the tree higher up at line F, we can get a more

abstracted melody F. We regard the abstraction of a

melody as a kind of melody morphing because melody E is

an intermediate melody between melody D and melody F.

Figure 3. Abstraction of melody.

2.1. ATTA

We have previously constructed an automatic time-span tree

analyzer (ATTA), which derives a time-span tree based on

an extended GTTM (exGTTM) that we proposed. The

exGTTM re-formalizes the rules of the GTTM and

establishes an algorithm for acquiring a time-span tree [3, 4].

2.2. Primitive operations using time-span trees

For melody morphing, we use the primitive operations of the

subsumption relation (written as ⊑), meet (written as ⊓) and

join (written as ⊔), as proposed by Hirata [5]. The

subsumption relation represents the relation "an instantiated

object" ⊑ "an abstract object" (Figure 4a). For example, the

relationship among TD, TE and TF, which are the time-span

trees (or reduced time-span trees) of melodies D, E, and F in

Figure 3, can be represented as follows:

The meet operator extracts the largest common part or the

maximally common part of two time-span trees of two

melodies in a top-down manner (Figure 4b). The join

operator joins two time-span trees in the top-down manner

as long as the structures of two time-span trees are

consistent (Figure 4c).

2.3. Melody Morphing Algorithm

Generally, morphing is the changing of one image into

another through a seamless transition. For example, a

morphing method for a face picture is used to create

intermediate pictures through the following operations.

1) Link characteristic points such as eyes and nose, in the

two pictures (Figure 5a).

2) Rate the intensities of shape (position), color, etc… in

each picture.

3) Combine the pictures.

Similarly, our melody morphing method is used to create

intermediate melodies with the following operations.

Figure 5. Examples of linking two pictures/melodies.

3. MELODY MORPHING BY EXTRAPOLATION

By using the time-span trees TA and TB from melodies A and

B, we can calculate the most common information TA ⊓TB

which are the essential parts of melody A as well as those of

melody B. The meet operations TA ⊓TB are abstracted from TA
and TB, and those discarded notes are regarded as the

difference information of TA and TB (Figure 6a). We consider

that there are features without the other melody in the

difference information of TA and TB. Therefore, we need a

method for smoothly increasing or decreasing these features.

The melody divisional reduction method can abstract the

notes of the melody in the differential branch of the time-span

tree [6]. On the other hand, the melody divisional

augmentation method can increase the notes of the melody in

the differential branch of the time-span tree which is an inverse

process of abstraction. Before explaining melody divisional

augmentation, we will explain melody divisional reduction.

3.1. Melody Divisional Reduction

In the melody divisional reduction method [6], we can

acquire melodies Cm (m=1, 2, …, n-1) from TA and TA ⊓TB,

which holds the subsumption relations as follows (Figure 6b).

AT BT
1 CT

2 CT …
2 nCT

1 nCT
AT

The value of subscript m of Cm indicates the number of

notes in the difference information of the time-span trees

that are included in TA and not included in TCm. In Figure 7a,

there are nine notes included in TA but not included in TA ⊓
TB. Therefore, the value of n is eight, and we can acquire

eight kinds of interpolative melodies Cm between TA and TA

⊓TB. Hence, melody Cm attenuates features that only have

melody A without melody B.

AT BT
AT BT

AT BT
AT BT

(b) (c)

⊓
⊔

(a)

Instantiating Abstracting

⊑

, Figure 4. Examples of subsumption ⊑meet ⊓and join ⊔.

TF ⊑TE ⊑TD

(a) (b)

TD7

Melody D

3.2. Melody Divisional Augmentation

In the melody divisional augmentation method, we can

acquire melodies Cm (m=n+1, n+2, n+3 …), which holds

the subsumption relations as follows (Figure 6c).

AT BT
 AT

 1 nCT 2 nCT 3 nCT
 …

The melody divisional augmentation method increases the

number of notes one by one, which is the opposite process

that the melody divisional reduction method reduces the

number of the notes one by one (Figure 7b).

Step 1: Decide the level of augmentation

A user determines parameter L, which determines the level

of augmentation. L is from 1 to the number of notes, which

the user wants to increase in the melody.

Step 2: Divide a note in the difference information

Select a note with the longest duration in the difference

information of the time-span tree that are not included in

TA ⊓TB. If two or more notes have the longest duration, we

select the first one. Then, divide the note where the beat is

strongest. The value of strength in each beat can be

acquired from the GTTM analysis results [2-4].

Step 3: Determine the pitch of divided notes

If a note contains the strongest beat from two divided notes,

keep the original pitch before the dividing; otherwise,

change the pitch to the most stable one from lowest to

highest pitch of the original melody. The value of stability

is calculated based on the music theory of Tonal Pitch

Space [7].

Step4: Iteration

Iterate steps 2 and 3 L times.

3.3. Combining two Melodies

We use the join operator to combine melodies C and D,

which are results of the divisional reduction or

augmentation using time-span tree of melodies A and B

(Figure 6d).

Our previously proposed melody morphing method

only generates interpolative melodies in which the

melodies C and D in Figure 6 are both acquired using

melody divisional reduction. By using the melody

divisional augmentation, we can generate extrapolative

melodies.

The simple join operator is not sufficient for combining

TC and TD, because TC ⊔TD is not always a monophony

even if TC and TD are monophonies. In other words, the

result of the operation has chords when the time-span

structures override and the pitches of the notes are

different, although both input melodies are monophonies.

To solve this problem, we introduce a special operator [n1,

n2], which chooses notes n1 or n2 exclusively, as a result of

n1 ⊔n2. Then, the result of TC ⊔TD is all combinations of

monophonies generated from the operators.

(b) Melody divisional

reduction (section 3.1)

Figure 6. Overview of melody-morphing method.

Input melody B
Input melody A

TC

(d) Combining two melodies

(section 3.3)

Melody C5

TC5

TD

TA TB

TA TB

(a)Linking common information of the melodies

TC5

TC5 TD 6

TC12 TD6

TC 12

TD6

Interpolative melody

Extrapolative melody

Melody divisional reduction

Melody divisional augmentation

TD6

Melody D6

TB TA

(c) Melody divisional

Augmentation (section 3.2)

Figure 7. Melody divisional reduction and augmentation.

4. EXPERIMENTAL RESULTS

We tried to determine whether the method can generate

the extrapolative melody M from melody A and B which

holds following expression.

),(),(),(),(MBRMARandBARMAR , or

),(),(),(),(MARMBRandBARMBR

where R(X,Y) indicates the similarity between melodies

X and Y.

The meaning of the expression (1) is that a melody B is

an interpolative melody of melodies A and M, or a melody

A is an interpolative melody of melodies B and M.

To measure the similarity between melodies X and Y,

we used the following RN(X, Y), defined by Hirata [5],

which indicates how much information is lacking from the

two melodies as a result of the meet operation.

NN

N
N

YXxam

YXmeet
YXR

,

),(
,

 (2)

where |X|N indicates the number of notes in melody X.

We use 10 pairs of sample melodies A and B, and as a

result of confirmation, all the extrapolative melodies M

from melodies A and B, holds the expression (1).

5. CONCLUSION

We constructed a melody morphing method for

generating interpolative melodies and extrapolative

melodies from two input melodies A and B by using melody

divisional reduction and augmentation, which smoothly

decreases or increases the difference information of those

melodies. To generate, interpolative, or extrapolative

melodies, all we need to do is select two input melodies and

configure the parameters for controlling the reduction or

augmentation level of each melody. We plan to finish

developing the interactive melody generator and evaluate

whether the melody-morphing method is useful for

generating melodies.

6. REFERENCES

[1] Langston, P. ''Six Techniques for Algorithmic

Composition'', Proceedings of the International

Computer Music Conference, pp. 153-156, 1989.

[2] Lerdahl, F., and Jackendoff, R. A Generative Theory

of Tonal Music. Cambridge, Massachusetts: MIT

Press, 1983.

[3] Hamanaka, M., Hirata, K., and Tojo, S.

''Implementing „A Generative Theory of Tonal

Music‟'', Journal of New Music Research, 35:4, 249-

277, 2006.

[4] Hamanaka, M., Hirata, K., and Tojo, S. ''FATTA:

Full Automatic Time-span Tree Analyzer'',

Proceedings of the International Computer Music

Conference, Vol. 1, pp. 153-156, 2007.

[5] Hirata, K., and Aoyagi, T. '' Computational Music

Representation Based on the Generative Theory of

Tonal Music and the Deductive Object-Oriented

Database'', Computer Music Journal, 27:3, pp. 73-89,

2003.

[6] Hamanaka, M., Hirata, K., and Tojo, S. ''Melody

Morphing Method based on GTTM'', Proceedings of

the International Computer Music Conference, pp.

155-158, 2008.

[7] Lerdahl, F. Tonal Pitch Space, Oxford University

Press, 2001.

(a) Divisional Reduction (b) Divisional augmentation

TA

TA TB

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

TC - 7

TC 8

TA

TC 16

TC 15

TC 14

TC 13

TC 12

TC 11

TC 10

TC 9

(1)

