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Abstract 
 

Global society has experienced a flood of various 
types of data as well as a growing desire to discover 
and use this information effectively. Moreover, this 
data is changing in increasingly huge and complex 
ways. In particular, for data that is generated 
intermittently and at different intervals, attention has 
been focused on data streams that use sensor-
network and stream mining technologies to discover 
useful information. In this paper, we focus on 
classification learning, which is an analytical 
method of stream mining. We are concerned with a 
decision tree learning called Very Fast Decision 
Tree learner (VFDT), which regards real data as a 
data stream. We analyze credit card transaction data 
as data stream and detect fraud use. In recent years, 
people with credit card are increasing. However, it 
also increases the damage of fraud use accordingly. 
Therefore, the detection of fraud use by data stream 
mining is demanded. However, for some data, such 
as credit card transaction data, contains extremely 
different rate of classes. Therefore, we propose and 
implement new statistical criteria to be used in a 
node-construction algorithm that implements VFDT. 
We also evaluate whether this method can be 
supported in imbalanced distribution data streams. 
 
1. Introduction 
 

Recent developments in information processing 
techniques have enabled us to collect and accumulate 
massive amounts of data. The need for discovering 
and utilizing the useful information in this data is 
growing. Because of this, data mining, which is a 
technology used to collect data to discover useful 
information, has become a focus of attention. 
However, with the spread of the Internet and the 
development of sensor techniques, this data is 
constantly evolving into more complex shapes on a 
large scale, and the increasing data must be handled 
on a real-time basis. New knowledge-stream-mining 
techniques are required to process such large-scale 
data that arrives intermittently and at different 
intervals as data-stream flows. Stream mining uses 

various analytical methods; in particular, 
classification learning is gaining much attention. 
Many classification learning methods have been 
proposed, of which the decision tree learning method 
is commonly used, because it is fast and the 
description of classifiers that it derives is easily 
understood. One of the data streams that supports the 
decision tree learning method is called the Very Fast 
Decision Tree (VFDT)[1]. As data arrives, this data 
stream grows gradually while the data is classified. 
The credit card transaction data is data stream. 
Therefore it is possible to detect fraud use to classify 
transaction data using VFDT. However, among the 
various data types, there is some data, such as the 
credit card transaction data discussed in this paper 
whose characteristics are extremely different. When 
such data is used in a data stream, some problems are 
capable of causing the accuracy of VFDT to be 
decreased[2,3]. 

In this paper, we propose a node-construction 
algorithm that can apply to imbalanced distribution 
data streams. We also implement and evaluate the 
criteria for constructing  nodes. 

This paper is organized as follows. First, in 
section 2, we explain the VFDT. In section 3, we 
describe our proposed method, which consists of a 
VFDT construction from imbalanced distribution 
data streams. In section 4, we verify the viability of 
the proposed methods in experiments. In sections 5 
and 6, we describe and consider the experimental 
result. In the final section, we conclude and discuss 
our future works. 

 
2. Related works 
 

Classification is one of the most common tasks in 
data mining. The main classification methods that 
currently exist include decision trees, neural 
networks, logistic regression, nearest neighbors, and 
support vector machines. 

Decision trees are recognized as very powerful 
and attractive classification tools, mainly because 
they produce easily interpretable and well-organized 
results and are, in general, computationally efficient 
and capable of dealing with noisy data. Decision tree 
techniques build classification or prediction models 
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based on the recursive partitioning of data, which 
begins with the entire body of data then splits the 
data into two or more subsets based on the values of 
one or more attributes, and then repeatedly splits 
each subset into finer subsets until the stopping 
criteria are met [4]. 

Typical decision tree learning methods include 
ID3 and C4.5[5]; however, they cannot correspond to 
data streams. The VFDT has extended these decision 
tree learning methods to correspond to data streams. 
In addition, there are the CVFDT[6], CVFDTNBC [7], 
and UFFT[8] methods, which are considered concept 
drift methods, which are useful when the properties 
of the data stream change over time. 

In this paper, we don't refer to concept drift and 
pick up VFDT. 
 
2.1. VFDT 
 

A decision tree construction such as C4.5, which 
first receives all examples as input, is called an 
offline type decision tree. However, this method 
cannot start constructing until all the examples are 
available, and it also needs to access them randomly. 
Therefore, it cannot be applied to data streams. 

On the other hand, a decision tree construction in 
which new examples arrive in sequence at short 
intervals in a data stream and huge numbers of 
examples accumulate is called an online type 
decision tree. A representative example is the Very 
Fast Decision Tree (VFDT) learner. 

The VFDT does not accumulate the examples in 
main memory, because it can gradually grow without 
waiting for the arrival of all the examples. The 
construction algorithm of the VFDT accumulates 
only the classes of examples and the 
contemporaneous occurrence frequency of attribute 
values in each node to decrease the consumption of 
memory and processing time, instead of 
accumulating examples in a decision tree. The VFDT 
gradually grows as examples are received to create 
leaf nodes that grow into branches from only the root 
node. When it creates new nodes, it grows the 
decision tree, accumulating frequency information in 
the previous node and measuring whether the new 
nodes fulfill the statistical criteria. 

The statistical criterion called the Hoeffding 
bound[9] is used by the VFDT. The examples 
accumulated in leaf nodes are only a part of all the 
available examples. Therefore, it is possible that they 
include errors. However, the set of examples that 
arrive at each leaf node can be regarded as perfect 
data sets in an offline type decision tree, which can 
consider infinitely-long data streams produced 
stochastically based on stationary distribution. 

Consider a real-valued random variable r having a 
range R and conduct n independent observations of 
this variable. After computing their mean ݎҧ , the 
Hoeffding bound guarantees that the true means of 

variable r is greater than ݎҧ െ  with a probability of ߝ
1 െ  :is defined as follows ߝ ,Here .ߜ

ߝ  ൌ ඨܴ
ଶ lnሺ1 ൗߝ ሻ
2݊

 (1)  

 
If the difference between the best standard level at 
one leaf and the next standard level is greater than ߝ, 
then it creates additional branches from the leaf 
node. 

Using the Hoeffding bound, if ∆ܩሺሻതതതതതതത െ ሺܺሻതതതതതതതതܩ െ
ሺܺሻതതതതതതതതܩ   then splitting node by attribute ܺ with ,ߝ
probability 1 െ ߜ  is true. Here, ܩሺሻ  is an 
information-gain function, where ܺ  is the attribute 
that creates the largest information gain and ܺ is the 
attribute that creates the second-largest information 
gain. 
 
2.2. VFDT construction from data stream 
 

In the current research, previous study constructed 
the VFDT, which is a decision tree learning method 
that corresponds to the data stream[10]. 

Here, we constructed the VFDT to consider credit 
card transaction data as a data stream. 

As described in section 1, credit card transaction 
data is extremely different from the rate of classes of 
data in classification; however, we constructed the 
VFDT without adding the change to the construction 
algorithm of the VFDT. To verify whether the VFDT 
changes by data sampling, we constructed 10 VFDTs 
using 10 data sets when constructing the VFDT 
using the credit card transaction data. Because the 
best-grown decision tree is 10% in constructing 
decision trees by three types of fraud-use-rate 
experiments in the construction of offline type 
decision trees in existing research[11], here, we set 
the fraud-use rate to 10%. In offline type decision 
trees that are constructed by C4.5, the fraud use rate 
setup is as follows: 

 
(a) 0.02% is the actual fraud-use rate 
(b) 0.5% is the sampling rate of data provided 
(c) 10% is set up in the experiment. 
 

(a) becomes a decision tree divided into two leaf 
nodes by the root node. (b) becomes a decision tree 
that has 101 nodes, including 51 leaves.  

Both (a) and (b) have more than 99% accuracy, 
but both the fraud use rates 0.02% and 0.5% are very 
low to actually classify almost all the fraud data. 
Therefore, we used a data set of 10% fraud-use rate 
to construct the VFDT. 

To evaluate by 10-fold cross-validation in all 
VFDTs and retrieve their accuracy and size, we 
calculated the average of the results of 10 decision 
trees. Therefore, we actually constructed 100 
VFDTs. The accuracy of the VFDT became 
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92.157%, and the size of the VFDT became 91. The 
result of the VFDT is independent of data sampling 
because the variance of accuracy became 0.290. 
 
3. Extended VFDT for imbalanced 
distribution data stream 
 

The Hoeffding bound, which is the node 
construction criterion described in 2.1, assumes that 
the data distribution of the data stream uses Gaussian 
distribution[12]. However, the credit card transaction 
data described in 4.1.1 contains classes of examples 
that include data streams that do not follow Gaussian 
distribution. In this case, the accuracy of the 
constructed VFDT is high but actual classification 
accuracy of one class is almost ignored. 

Therefore, we propose the construction of a 
VFDT that can correspond to imbalanced 
distribution data streams, in order to improve the 
calculation of the Hoeffding bound, which is the 
node-construction criterion of the VFDT. We weight 
the entropy of ܩሺܺሻ  and ܩሺܺሻ  using the 
calculation of information gain ∆ܩሺሻതതതതതതത ൌ ሺܺሻതതതതതതതതܩ െ
ሺܺሻതതതതതതതതܩ   by judging when it grows new branches ߝ
from leaf nodes. In this paper, we define two classes. 

The calculation of entropy using ID3 and C4.5 
defines that ݂ݍ݁ݎሺܥ, ܵሻ to set of examples S is the 
number of examples that are in class ܥ  in S, the 
number of examples including set S is |ܵ|  and an 
example selected randomly from S is in class ܥ. 

Therefore, the average entropy info(S) is as 
follows: 

ሺܵሻ݂݊݅  ൌ െ
,ܥሺݍ݁ݎ݂ ܵሻ

|ܵ|

ଶ

ୀଵ

ଶ݈݃ ቆ
,ܥሺݍ݁ݎ݂ ܵሻ

|ܵ|
ቇ         ሺ2ሻ 

Here, we weight the entropy of each class and 
assume a sum when calculating ܩሺܺሻതതതതതതത. The weight 
has the range of 0  ߱  1 and is a class of fraud 
use. Therefore, if the class of fraud use is ܥଵ and the 
class of normal use is ܥଶ, then: 

ሺܵሻ݂݊݅ ൌ െ߱
,ଵܥሺݍ݁ݎ݂ ܵሻ

|ܵ|
ଶ݈݃ ቆ

,ଵܥሺݍ݁ݎ݂ ܵሻ
|ܵ|

ቇ 

(3) 
െሺ1 െ ߱ሻ

,ଶܥሺݍ݁ݎ݂ ܵሻ
|ܵ|

ଶ݈݃ ቆ
,ଶܥሺݍ݁ݎ݂ ܵሻ

|ܵ|
ቇ 

 
Additionally, the VFDT does not support numeric 

data streams, because it is an algorithm with a 
discrete data stream. However, the programs of the 
VFDT released in VFML[13], which is the tool used 
to construct the VFDT, include improvements for 
handling numeric attributes. Specifically, entropy-
based discretization[12] has been adopted. When the 
VFML discretizes numeric attributes to two intervals 
by attribute value, which increases the maximum 
information gain of each numeric attribute, we also 
similarly weight the calculation of information gain. 

 However, only the information gain of the left 
part is weighted when it compares the information 
gain after weighting the Hoeffding bound as 
ሺሻതതതതതതതܩ∆ ൌ ሺܺሻതതതതതതതതܩ െ ሺܺሻതതതതതതതതܩ  ε . Therefore, if it 
compares directly the Hoeffding bound ߝ of the right 
part, then it compares weighted to nonweighted. 
Hence, we multiply the information gain of the right 
part by the average 0.5 of ߱  and 1 െ ߱  to two 
classes, and we balance both sides. 
 
4. Experiments 
 

In this section, we describe some experiments to 
verify the effectiveness of our proposal method and 
its evaluations. 
 
4.1. Experimental data and tools 
 

Here, we describe data and tools used in 
experiment. 
 
4.1.1. Credit card transaction data  
 

In this paper, we regard credit card transaction 
data as a data stream and conduct experiments using 
it. In actual credit card transactions, the data is 
complex, constantly changing and arrives online 
continuously as follows: 

(i) Approximately one million transactions 
arrive per day. 

(ii) Each transaction takes less than one second. 
(iii) Approximately one hundred transactions 

arrive per second at peak time. 
(iv) Transactions arrive 24 hours per day, every 

day, and continue to arrive forever. 
 

Therefore, credit card transaction data can be 
precisely called a data stream. However, even if we 
use data mining for such data, an operator can 
generally accommodate monitoring around only 
2,000 transactions per day. Therefore, we have to 
detect suspicious transaction data effectively under 
the rigid conditions of 0.02% of the total number of 
transactions. In addition, there is the issue that 
people detect extremely low fraud use from massive 
amounts of transaction data, because real fraud use 
occurs at an extremely low rate, that is, from 0.02% 
to 0.05% of all of the transaction data.  

The data that we use in this paper describes 
transaction data in CSV format in time order and the 
data exists as attributes. Credit card transaction data 
has 124 attributes: 84 are called transactional data, 
which includes an attribute to discriminate whether 
the data is fraud use, and the others are called 
behavioral data, which are calculated by a user's 
usage. The file size is approximately 700 MB per 
month. As mentioned earlier, the fraud-use rate is 
from 0.02% to 0.05% before, and this data is re-
sampled to about 0.5%. 
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 The number of attributes of data 
- 57 transactional attributes and 42 behavioral 
attributes 
 Sampling rate of fraud use 
-   Fraud ：Normal = 1：9 

 
Usually, the provided data has around 120 attributes; 
however, we exclude some attributes that are 
irrelevant for the construction of the decision tree, 
which has low relevance for fraud-use models. We 
also use approximately 50,000 data items.  
 
4.1.2. UCI data  
 

We performed experiments for benchmark testing 
using the spambase data set of the UCI data set[14]. 
The reason being that it has two classes defined in 3, 
all attributes are numeric like credit card transaction 
data, and it did not become the VFDT, which has 
only the root node without changing algorithm. 
Following are the contents of the spambase data: 

 
 Number of attributes of data ：57 
 Class：1(Spam class), 0(non-spam class). 
 Number of data：spam class：1,813, 

non-spam class：2,788  
 
4.1.3. Tools 
 

We constructed these experiments using VFML, 
which is implementation code for the machine 
learning of a data stream. Next, we constructed an 
offline type decision tree using the J48 algorithm 
based on C4.5 and implemented in data-mining tool 
software called Weka[15]. Then, we compare these 
results with the proposed VFDT. 
 
4.2. Experimental methodology 
 

We constructed the following two VFDTs using 
the two sets of data described in 4.1. 

 
(i) A VFDT using the VFDT construction 

algorithm implemented using the VFML 
without change. 

(ii) A VFDT whose entropy uses the calculation 
of the information gain to grow new 
branches from leaf nodes and in which 
discretized numeric attributes are weighted. 

 
As we described in 3, We weighted credit card 
transaction data to focus on the distribution of its 
data classes. As described in 4.1.1, we re-sampled 
the ratio of the normal and fraud as 9:1. We set 
߱ ൌ 0.9  based on the accuracy of the VFDT, 
considering the data distribution. We also performed 
experiments for the case of  ߱ ൌ 0.1,0.5,0.99,0.999. 

This is in case the weight to fraud use is small, the 
weight conforms to normal use and the weight 
approximates 1. We excluded ߱ ൌ 0.0,1.0  because 
only the entropy of the one class is calculated by 
these weights. (The entropy of the other class 
becomes 0.) 

We also weighted one class as ߱. The range is 
0  ߱  1. In the experiments using the spambase 
data set, we set ߱ ൌ 0.1,0.2, . . . ,0.8,0.9  at 0.1 
intervals. We excluded ߱ ൌ 0.0,1.0  for similar 
reasons as in the credit card transaction data. 

In the case of both data sets, ߱ ൌ 0.5 is the same 
as the existing method without weighting, because 
the operation to compare the information gain to the 
Hoeffding bound is applied. In both experiments, the 
pruning of the VFDT is set to 
݂݁ܿ݊݁݀݅݊ܿ ݃݊݅݊ݑݎ ൌ 25% as the default value. 
 
5. Experimental results 
 

Here, we show the results of each experiment. 
 
5.1. Results of credit card transaction data 
 

Table.1 lists the accuracy, the size, the runtime 
and the number of fraud rules of the VFDT 
constructed in (i) and (ii) of 4.2 using credit card 
transaction data. Table.2 lists the result of the 
confusion matrix given from the existing method 
corresponding to ߱ ൌ 0.5 . The result of the 
confusion matrix given ߱ ൌ 0.1,0.9,0.99,0.999  is 
listed in order from Table.3 to Table.6. The result of 
Table.1 is that of the result of performing 10-fold 
cross-validation implemented in VFML. VFML 
calculates the error rate, the number of all the nodes 
of the VFDT as the size and the runtime. Using 10-
fold cross validation, we actually calculate the 
average of 10 VFDTs in each weight. 
 

Table 1. The accuracy, the tree size, the 
runtime and the number of fraud rules 

 Accuracy Tree size Runtime 
Fraud 
rules 

߱ ൌ 0.5 90.851 91.000 5.907 3 
߱ ൌ 0.1 71.188 27.400 4.289 3 
߱ ൌ 0.9 92.325 106.600 6.722 5 
߱ ൌ 0.99 90.881 99.400 6.632 3 
߱ ൌ 0.999 89.879 90.800 6.433 3 
 
 
Table 2. Confusion Matrix (Existing method) 

߱ ൌ 0.5 
Actual classes 

0(Normal) 1(Fraud) 
Leaf 

classes 
0(Normal) 40,825 2,174 
1(Fraud) 1,494 2,598 
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Table 3. Confusion Matrix (Proposal method) 

߱ ൌ 0.1 
Actual classes 

0(Normal) 1(Fraud) 
Leaf 

classes 
0(Normal) 32,027 1,550 
1(Fraud) 10,292 3,222 

 
 
Table 4. Confusion Matrix (Proposal method) 

߱ ൌ 0.9 
Actual classes 

0(Normal) 1(Fraud) 
Leaf 

classes 
0(Normal) 40,174 1,982 
1(Fraud) 2,145 2,790 

 
Table 5. Confusion Matrix (Proposal method) 

߱ ൌ 0.99 
Actual classes 

0(Normal) 1(Fraud) 
Leaf 

classes 
0(Normal) 41,449 3,555 
1(Fraud) 870 1,217 

 
Table 6. Confusion Matrix (Proposal method) 

߱ ൌ 0.999 
Actual classes 

0(Normal) 1(Fraud) 
Leaf 

classes 
0(Normal) 42,252 4,669 
1(Fraud) 67 103 

 
5.2. Results of spambase data set 
 

Table.7 lists the accuracy, the size and the 
runtime of the VFDT constructed in (i) and (ii) of 4.2 
using the spambase data set. Table.8 lists the result 
of the confusion matrix given from the existing 
method corresponding to ߱ ൌ 0.5. Table.9 lists the 
result of confusion matrix weighted ߱ ൌ
0.1,0.2,0.3,0.4. The result of the confusion matrix 
given ߱ ൌ 0.6,0.7,0.8,0.9  is listed in order from 
table.10 to Table.13. The reason that we coordinate 
the results from ߱ ൌ 0.1  to ߱ ൌ 0.4  in Table.9 is 
that all the results conform, because the classification 
rules of weighted class 1 (spam class) of the VFDT 
are all the same. The result of Table.7 is that of the 
performing 10-fold cross-validation. The accuracy in 
Table.7 is that we subtract the error rate from 100%. 
Using 10-fold cross-validation, we actually calculate 
the average of 10 VFDTs in each weight. 

 
 
Table 7. The accuracy, the size and the runtime 

 Accuracy(%) Tree size Runtime 
߱ ൌ 0.1 78.131 3.000 0.281 
߱ ൌ 0.2 78.941 3.800 0.257 
߱ ൌ 0.3 79.101 4.200 0.254 
߱ ൌ 0.4 80.500 7.200 0.293 
߱ ൌ 0.5 80.296 9.400 0.341 
߱ ൌ 0.6 76.564 17.000 0.474 
߱ ൌ 0.7 75.879 16.000 0.466 
߱ ൌ 0.8 70.116 11.200 0.396 
߱ ൌ 0.9 69.149 11.000 0.393 

Table 8. Confusion Matrix(Existing method) 

߱ ൌ 0.5 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,751 1,092 

1(spam) 73 721 
 
 
Table 9. Confusion Matrix(Proposal method) 

߱ ൌ 0.1,0.2,0.3,0.4 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,198 193 

1(spam) 590 1,620 
 
 

Table 10. Confusion Matrix(Proposal method) 

߱ ൌ 0.6 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,463 770 

1(spam) 325 1,043 
 
 

Table 11. Confusion Matrix(Proposal method) 

߱ ൌ 0.7 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,389 480 

1(spam) 399 1,333 
 
 

Table 12. Confusion Matrix(Proposal method) 

߱ ൌ 0.8 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,542 1,205 

1(spam) 246 608 
 
 
 

Table 13. Confusion Matrix(Proposal method) 

߱ ൌ 0.9 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 2,542 1,205 

1(spam) 246 608 
 
 
6. Considerations 
 

Here we examine each of the experiments. 
 
6.1. Credit card transaction data 
 

As described in Table.1, the accuracy of the 
VFDT that was constructed using credit card 
transaction data became the highest (92.325%) at 
߱ ൌ 0.9 , and it became the lowest (71.188%) at 
߱ ൌ 0.1. From Table.2 to Table.6 of the confusion 
matrix,  Fig.1 shows the recall to fraud use class. 

When ߱ ൌ 0.1, the fraud use is detected the most. 
When ߱ ൌ 0.9, the accuracy of the VFDT is second. 
However, when ߱ ൌ 0.1, the number of normal use 

Copyright © 2011 WorldCIS-2011 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 170



classified to leaf nodes which is normal use are 
extremely fewer than another results of weight. 
Therefore, we think that the accuracy of the VFDT is 
low. Additionally, in the case of approximating 
weight to fraud use by 1, such as ߱ ൌ 0.999, the 
recall of fraud use became very low. Therefore, it 
can be said that the accuracy of the VFDT itself 
consists almost entirely of the classification of 
normal use. 

 

 
Figure 1. The recall of the fraud use 

 
 
Moreover, we compare the size and the number of 
the fraud use rules of the VFDT with each weight 
value; they are stationary with the exception that the 
size became 27.400 with ߱ ൌ 0.1 . With the 
exception that the number of the fraud rules is five, 
in the case that the size of the VFDT became the 
largest with ߱ ൌ 0.9, the number of the fraud use 
rules is three. 

To compare the results of the credit card 
transaction data, we constructed an offline type 
decision tree using the C4.5 algorithm. The accuracy 
of the VFDT itself became 95.459%. The offline 
type decision tree constructed using the C4.5 
algorithm constructs to input all of the data first. 
Therefore, its accuracy was usually higher than the 
accuracy of the VFDT, which is grown using partial 
data from all of the data. Table.14 lists the confusion 
matrix of this tree. As in the case of the VFDT, we 
calculated the recall to fraud use, which became 
79.742%. For the VFDT constructed using credit 
card transaction data, the recall to weighted fraud use 
decreased as compared with offline. As described in 
Table.1, the runtime for VFDT in case of changing 
the value ߱  are no significant change. However 
VFDT can construct in 1/20 the time it took for 
constructing by C4.5. This is that VFDT constructs 
gradually to divide data. By contrast, C4.5 constructs 
to input all of the data first. 

 
 
 
 

Table 14. Confusion Matrix(Fraud use by C4.5) 

 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 41,422 897 

1(spam) 1,241 3,531 
 
 
6.2. Spambase data set 
 

As described in table.7, the accuracy of the 
VFDT, which was constructed using the spambase 
data set, became the highest (80.500%) at ߱ ൌ 0.4, 
and it became the lowest (69.149%) at ߱ ൌ 0.9 . 
From Table.8 to Table.13 of the confusion matrix, 
Fig.2 shows the recall to weighted class 1 (spam 
class). 
 

 Figure 2. The recall of the spam class 
 
 
When ߱ ൌ 0.1,0.2,0.3,0.4, it became the highest and 
the VFDT best classified the spam class described in 
Fig.2. In the case of ߱ ൌ 0.1,0.2,0.3,0.4, the shape 
of the VFDT is exactly the same and there is only 
one rule of the spam class. Therefore, the confusion 
matrix is the same. 

As in the case of the credit card transaction data, 
we constructed an offline type decision tree using the 
C4.5 algorithm. The accuracy of the decision tree 
itself became 92.980%. Table.15 lists the confusion 
matrix of this tree. 

 
Table 15. Confusion Matrix(spambase by C4.5) 

 
Actual classes 

0(non-spam) 1(spam) 
Leaf 

classes 
0(non-spam) 41,422 897 

1(spam) 1,241 3,531 
 

 
As in the case of the VFDT, we calculated the 

recall to the spam class from the confusion matrix. It 
became 90.789%. The accuracy of the decision tree 
itself is superior to the accuracy of the VFDT, but the 
recall to class 1 of the VFDT that is weighted 
decreased only 1% as compared with offline. As 
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described in Table.7, the runtime for VFDT in case 
of changing the value ߱ are no significant change. 
However VFDT can construct in 1/3 the time it took 
for constructing by C4.5. Consequently, to construct 
the VFDT to weight, we can improve the 
classification accuracy of the weighted class as much 
as the offline type decision tree. 
 
6.3. Comparison of the results 
 

We weighted the class whose ratio of distribution 
is small. Therefore, we considered that the 
classification accuracy of the class would increase 
and the accuracy of the VFDT itself would increase 
as well. However, in the case of the spambase data 
set, both the accuracy of the VFDT itself and the 
recall to class 1 were high when the weighting was 
small. In the case of the credit card transaction data, 
when the weighting was large, the accuracy of the 
VFDT itself improved. However, the recall to fraud 
use was high when the weighting was small. 
However, in the credit card transaction data, the 
recall of the normal use extremely decreased when 
the weight was small. Therefore, we proved that the 
accuracy of the VFDT itself decreased. 

For both cases, in terms of the weight class, we 
can improve the accuracy of the VFDT itself and the 
recall. Especially, we can improve the accuracy more 
than C4.5 algorithm's one. 

However, in these experiments, we could not 
specify how to weight to improve the accuracy of the 
VFDT. Because the ratio of the distribution of the 
class of the spambase data set and the credit card 
transaction data is extremely different, the accuracy 
does not improve to weight in the case of the 
spambase. 
 
7. Conclusion and future works 
 

In this paper, we used credit card transaction data 
as an imbalanced distribution data stream. We 
proposed and implemented a new statistical criterion 
for a node-construction algorithm, and verified its 
viability. As a new statistical criterion for a node-
construction algorithm, we weighted the class of the 
entropy by comparing the Hoeffding bound to the 
information gain used in splitting the nodes of the 
existing algorithm. We think that the accuracy will 
improve if we weight the data of the small ratio of 
the class with a large weight. We verify that we can 
apply the proposed method to not only imbalanced 
distribution data streams such as credit card 
transaction data, but also to usual data streams. For 
this, we considered the results of the VFDT, which is 
constructed using the UCI data set. 

As a result, we can improve the accuracy and the 
recall to weight one class with both data sets. 
Especially, depending on the weight values, the 

accuracy of the VFDT is the same as the offline type 
decision tree constructed using a C4.5 algorithm. 

However, using the credit card transaction data 
and the credit card transaction data in these 
experiments, the accuracy of the VFDT itself and the 
recall to weighted class have variability, and the 
result do not conform with the same weight. For this 
reason, from a usual data stream and a data stream 
whose ratio of distribution of data is extremely 
different, we cannot find the best means for 
weighting in these experiments. 

In future works, we will consider how to decide 
the weight without pre-experiments. 
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