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The episodic memory, the memory of personal events and history, is essential for understanding the mechanism of human
intelligence. Neuroscience evidence has shown that the hippocampus, a part of the limbic system, plays an important role in the
encoding and the retrieval of the episodic memory. This paper reviews computational models of the hippocampus and introduces
our own computational model of human episodic memory based on neural synchronization. Results from computer simulations
demonstrate that our model provides advantage for instantaneous memory formation and selective retrieval enabling memory
search. Moreover, this model was found to have the ability to predict human memory recall by integrating human eye movement
data during encoding. The combined approach between computational models and experiment is efficient for theorizing the
human episodic memory.

1. Introduction

In 1982, Marr [1] argued the importance of computational
theory for understanding the information processing in the
brain and presented “three levels at which any machine
carrying out an information-processing task must be under-
stood (p. 25)” as follows.

(i) Computational theory. What is the goal of the compu-
tation, why is it appropriate, and what is the logic of
the strategy by which it can be carried out?

(ii) Representation and algorithm. How can this computa-
tional theory be implemented? In particular, what is
the representation for the input and output, and what
is the algorithm for the transformation?

(iii) Hardware implementation. How can the representa-
tion and algorithm be realized physically?

As an example, consider a brain function of “associative
memory of visual stimulus A and B.” In the level of the

computational theory, it is asked what relationship between
stimulus A and B results in the memory; for example, a
correlation coefficient of presentation sequences of A and
B will indicate a strength of association between A and B.
On the level of representation and algorithm, the visual
stimuli can be understood by an N-dimensional binary
vector pattern where an overlap between stimulus A and
B will be an important parameter for their association.
A correlation of vector patterns will be represented by a
N × N matrix denoting the connection strength between
ith and jth units and the matrix will be formed by the
Hebb rule with a repetitive presentation of the stimulus.
On the level of hardware implementation, it is asked what
neuronal activation and dynamics are used for implementing
the above algorithm; for example, neuronal synchronization
dynamics might play an important role in the synaptic
plasticity under the Hebb rule. The above three levels of
understanding can be separately considered, while all levels
are necessary for a complete understanding of the function
of visual associative memory.
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In the case of the memory function, the main problem
is how to theorize the memory function; for example, a
simple record and playback scenario is not perfect and there
is a problem on the level of the computational theory. For
example, how does the brain organize experiences into mem-
ory that can be applicable to novel situations? The models
of artificial intelligence focus on the level of computational
theory, and the models of neuroscience further address the
representation-algorithm level and the implementation level.
The final goal is to have a computational theory of the
memory function that can be common between artificial
intelligence models and neuroscience models, while the
neuroscience models are advantageous in the theorization
of the memory function in cooperation with experimental
evidences.

This paper reviews computational models of human
episodic memory that are associated with the personal
history and contextual information of the environment.
Section 2 summarizes the functional aspects of the episodic
memory and the contribution the hippocampus makes to
this memory. Section 3 investigates computational models
of the hippocampus. Sections 4 and 5 describe our com-
putational model of the human episodic memory and its
application to the simulation of the human memory by using
eye movement data. Section 6 summarizes the paper and
provides future directions.

2. What Is Episodic Memory?

2.1. Episodic Memory in the Hippocampus. The bilateral hip-
pocampal damaged patient H.M. [2] clearly demonstrated a
significant role of the hippocampus in the formation of new
memories. Patient H.M. had a normal IQ score and normal
language skills and procedural memory, while H.M. had
great difficulty in recognizing the current location and time
(e.g., events where H.M.’s own conduct had occurred several
minutes earlier). This kind of memory is categorized as
“episodic memory” [3] and known to be maintained by the
hippocampus. Even if damage to the hippocampus occurs in
childhood, patients with damage to the hippocampus show
difficulty in the formation and maintenance of the episodic
memory [4]. This is one of the reason why the hippocampus
is considered an essential structure for maintaining episodic
memory.

In 1983, Tulving [5] proposed that the episodic memory
can be modeled by an association of information among
“what,” “where,” and “when.” In relationship to this proposal,
a simplified version of the episodic memory model, an
object-place association model, is often used in experiments
involving humans [6–9], monkeys [10, 11], and rats [12].
In a task, participants are asked to remember identities and
locations of objects on a table during a short period. After
a short delay period, the participants are asked to retrieve
identities of the objects and reconstruct the arrangement of
the objects. When the hippocampus is damaged, patients
have great difficulty in performing such task [6–9]. This
evidence suggests that the hippocampus uses the object-place
representation as part of the episodic memory.
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Figure 1: Structure of the hippocampus and adjacent regions.

Anatomically, the hippocampus is known to receive a
convergent projection of the information of object and space
through the parahippocampal region [13] (Figure 1). The
object information starts from the perbocellar system with
color information. It then forms a ventral visual pathway,
converges to the perirhinal cortex in the parahippocampal
region, and then enters the hippocampus. The space infor-
mation starts from the magnocellar system with a wide visual
field and then forms a dorsal visual pathway, converges to
the parahippocampal cortex, and enters the hippocampus.
This anatomical structure is reasonable in relationship to
the object-place memory of the hippocampus; so the object-
place memory paradigm is a good tool for evaluating
the neural mechanism of the episodic memory in the
hippocampus.

2.2. Neural Dynamics of the Hippocampus. The hippocampus
is part of the limbic system and characterized by a closed
loop circuit [14] (Figure 1). The cortical input enters from
the superficial layer of the entorhinal cortex and is then
sequentially transmitted to the dentate gyrus, the CA3 and
the CA1 regions, and returns back to the deeper layer of the
entorhinal cortex. The hippocampus has been considered to
implement an associative memory [15] and the CA3 region
including massive recurrent connections is considered to be
a major network of the hippocampal memory [16]. These
structures are similar between the hippocampus of rodents
and primates, so that a common principle of the memory
function is expected [17].

In the CA1 and CA3 regions of the rat hippocampus,
many neurons were found to show a selective activation
during passing through a specific portion of the environment
[18]. Such neurons are called “place cells” and are also
found in monkeys [19] and humans [20]. The hippocampus
is known to represent a map of the environment called
“cognitive map,” and therefore the place cells are considered



Advances in Artificial Intelligence 3

Table 1: Classification of the models of the hippocampus with input overlap and asymmetry of connection weights.

Overlap of input vector

Discrete Continuous
Discrete and
continuous

CA3 connection weights
Symmetric Associative network Cognitive map network

Event-space
associative network

Asymmetric Sequence memory network
Cognitive map network for
navigation

Object-place
hierarchical cognitive
map network

a neuronal basis of the cognitive map [18]. In the case of
monkeys, other neuronal selectivity is further reported. This
selectivity is called “view cells” and encodes information
about the spatial location at which a monkey is looking
into the environment [10]. Interestingly, the activation is not
determined by a specific visual feature. Thus, this activity
is considered a result of the information integration among
body motion, head direction, and self-location. Both place
cells and view cells are considered to contribute to the spatial
navigation in the environment.

In the rat hippocampus, the local field potential of 4–
12 Hz (theta-band) oscillations appears prominently during
moving in the environment and the place cell firings are
known to be synchronized with the local field potential
(LFP) theta [21]. Moreover, the phase of the firing with
the LFP theta cycle is found to gradually advance as the rat
passes through the environment [22]. This phenomenon is
called “theta phase precession.” Each place cell firings have
different phases according to their entering time of the place
field, which then results in a sequential place cell firing
in a theta cycle that represents a temporally compressed
sequence of place field activation [23]. More important,
the time difference of the sequential firings agrees with an
asymmetric time window of a modified Hebb rule [24, 25].
The firing pattern of the theta phase precession is expected
to contribute to the formation of the cognitive map in the
hippocampus.

3. Computational Models of the Hippocampus

In this section, we review models of the hippocampus by
using a classification with input overlap and the asymmetry
of CA3 connection weights (Table 1). The CA3 region
has been considered a major region for maintaining the
hippocampal memory [16]; so the classification is applicable
for many models of the hippocampus. Although each model
has its own advantages in specific problems and the use of the
CA3 network highly depends on the dynamics of units and
other adjacent systems, the classification is meaningful for
looking over the function and dynamics of the hippocampus
models.

The CA3 region is regarded as a center of the memory
function and modeled as an associative network [26–29].
In the associative network, multiple vector patterns can
be stored into the CA3 connection weights and one of
the patterns can be recalled through mutual activation

among units. The memory encoding is implemented by the
Hebb rule in which the connections between simultaneously
activated units increase. The recall is implemented by mutual
unit activations through the connections, where the stored
vector pattern can be self-organized and completed from
an initial activation of a part of the vector pattern. The
performance of the pattern completion becomes better when
the overlap of the arbitrary pairs of vector patters is small
and random. In agreement with this model, an experimental
study involving rats demonstrated that the CA3 region is
essential for pattern completion [30].

In the above associative network, the connection weights
are symmetric, while the connection weights can be asym-
metric according to the Hebb rule with an asymmetric time
window [25]. Models with asymmetric CA3 connections
revealed that a sequence of vector patters can be stored and
recalled with mutual unit activations [31, 32]. It is important
that these models can deal with the information of the
time with asymmetric connections. Moreover, the temporal
compression with phase precession has been demonstrated
to have an advantage in the sequence memory formation
[33–35].

In cognitive map theory [18], the map of the envi-
ronment is represented by a network of place cells, where
population activity of the place cells gradually changes as
the rat passes through the environment. Such neuronal
activation was modeled by a “continuous attractor network”
[36], where the overlap of the positional input vector is
given by a function of spatial geometry (e.g., input vectors
of neighboring positions have a large overlap and input
vectors of distant positions have a small overlap) and CA3
connections are given by symmetric connections. This model
demonstrated that the population activity of place cells
representing a location in an environment can be self-
organized from an initial state of random unit activation.
When asymmetric connections are introduced to the CA3
network, the models are further able to show the ability of
spatial navigation where the sequential activation to a goal
location is evoked from arbitral location in the environment
[37–40].

A combination of discrete and continuous input vectors
was also used to represent an environment consisting of
objects. Rolls et al. [41] proposed a unified network between
discrete and continuous attractors, where both discrete and
continuous patterns are associated with symmetric connec-
tions that implement the pattern completion including both
discrete and continuous patterns. Byrne et al. [42] proposed
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a network model including the medial temporal system
and the parietal system where the CA3 region represents
both object and space information. Interestingly, this model
implements the mental imagery of navigation by integrating
movement signals into a proper population activation of
place cells. The authors proposed a model of a cognitive map
for object-place associations [43]. The overlap of input is
similar to the above models, while asymmetric connections
according to phase precession are introduced. The model
can store multiple object-place associations in a hierarchical
structure of this network with asymmetric connections that
represent inclusion relationships among visual features. In
such a structure, a set of object-place associations can be
recalled sequentially.

Let us consider the relationship between the models
and the episodic memory. According to Tulving’s proposal
[5], the episodic memory is modeled by an association
of information among “what,” “where,” and “when.” The
models with asymmetric connection with discrete input
and continuous input can deal with “when” information.
On the other hand, the models with discrete-continuous
input can deal with “what-where” associations that are often
used as an experimental model of the episodic memory in
animals [10–12]. In order to understand comprehensively
the episodic memory, it seems to be necessary to investigate
the integration between “when” and “what-where” in future
studies. In that case, the dynamics of phase precession can
be a strong candidate for integrating “what-where-when,”
because the model already demonstrated to be able to encode
each “when” and “what-where” information. In the next
section, we review a model of “what-where” association by
using theta phase precession.

4. A Computational Model of the Episodic
Memory Based on Neural Synchronization

In this section, a computational model of the episodic mem-
ory based on neural synchronization of phase precession [43]
is reviewed.

4.1. Representation of Object and Scene Information.
Figure 2(a) shows the information flow of the model
that follows experimental proposals [13, 17]. Retinal
information produces two visual pathways that converge on
the parahippocampal region, in which the perirhinal cortex
receives object information in the ventral visual pathway
and the parahippocampal cortex receives space information
in dorsal visual pathways. Subsequently, the object and
space information converge on the hippocampus that stores
object-place associations in the connection weights in the
CA3 network.

In the model, a one-dimensional environment with a
grayscale pattern including multiple objects with different
colors was assumed (Figure 2(b)). The object information
is represented by color features at the center of the visual
field that produces a discrete vector pattern. The scene
information is represented by spatial frequency components

of an object-centered gray-scale pattern in a 120 degree-
wide visual field that represents a spatially continuous vector
pattern. In these representations, the scene information
plays an essential role in the binding among multiple
object-place associations in an environment; that is, overlap
between scene information works as a tab for combining
two scenes and their orientation and distance can be
obtained by calculating a shift of the two visual patterns
(Figure 2(c)).

Multiple object-place associations are encoded by a
sequence with “saccadic” eye movement where one of the
objects is successively caught at the center of the visual field.
Since a size of saccade is found less than 10 degree [44],
the scene vector pattern will have a large overlap with a
subsequent scene vector and the object vector pattern will
drastically change at a subsequent saccade. Thus, the eye
movement produces a sequence consisting of discrete and
continuous vector sequences. It should be noted that the eye
movement sequence was assumed to “randomly” catch the
object and it is not like the scan path theory [45] in which a
stereotyped eye movement repeats when seeing a picture.

4.2. Memory Encoding Based on Neural Synchronization. The
visual input sequence of object and scene information is
stored into the CA3 connection weights by using theta
phase precession that has a computational advantage in
the encoding of the sequence [34, 35], the spatiotemporal
patterns [46], and the map of the environment [40].

In the model, the visual input sequence is translated into
a phase precession pattern at the entorhinal cortex, where
each neural unit shows an oscillatory activity according to
an excitatory visual input and its oscillatory frequency is
assumed to gradually increase when receiving a persistently
excitatory input [34]. Phase-locking dynamics between the
units’ oscillation and a global theta rhythm results in a
gradual phase advancement of the units’ oscillation with the
theta cycle. The CA3 region receives the pattern that is stored
into the CA3 connection weights according to the Hebb
rule with an asymmetric time window. The connections
between a simultaneously activated object and scene units
at each eye fixations can increase, while an additional effect
appears in the phase precession; earlier and persistently
activated units have activations at later phases and other
intermittently activated units can only have activations at
earlier phases. Subsequently, the modified Hebb rule with
an asymmetric time window results in the formation of
asymmetric connections from persistently activated units to
intermittently activated units (Figure 2(d)).

The activation duration of each unit can vary according
to the eye movement sequence, while on average the larger
overlaps of scene input vectors would produce a longer
activation of scene units than object units. The resultant
network appears to include unidirectional connections from
scene to object units from a random eye movement sequence.
In cooperation with symmetric autoassociative connections,
the network is characterized by a layered structure of
symmetric connections and interlayer asymmetric connec-
tion from scenes to object units (Figure 2(e)). We refer to
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Figure 2: Model of object-place association by using neural synchronization [43]. (a) Basic information flow of the model. (b) One-
dimensional visual environment including three colored objects and grayscale background. (c) Neuronal representation of object and scene
information. An association is represented by a combination of object feature and object-centered background that are encoded by a set of
discrete and continuous vector patterns. (d) Encoding of visual input sequence with theta phase precession. In the plot, black bars indicate
input and CA3 activities. Difference in input durations between objects and scenes results in a robust object-scene phase difference. (e) A
schematic graph of resultant CA3 connection weight. A node denotes a population of CA3 units having same selectivity of visual features.
The numbers in a node denote the selectivity of scene units of the node. For example, “23” indicates units activated during fixating on objects
2 and 3, while these are not activated during fixating on an object 1. Lines with an arrowhead indicate directional connections between unit
populations. ((f), (g)) Retrieval in the hierarchical network. Gray nodes denote units that are activated initially, and t1, t2, and t3 denote the
time after giving initial activations. A set of object-place associations is sequentially activated as an activity propagation in the network.

the structure as a hierarchical cognitive map for object-
place associations [43]. Interestingly, the network represents
“inclusion” relationships of visual features in multiple spatial
scales and it can be organized in an encoding period of
several seconds. This structure is expected to contribute to
an efficient memory storage of the global environment, as
demonstrated in psychological studies of human cognitive
maps [47, 48].

4.3. Memory Retrieval. The hierarchical cognitive map of
object-place associations has several advantages for mem-
ory retrieval. When the CA3 units of an object-scene
association are activated as an initial cue, the units of
other associations are automatically activated through the
CA3 recurrent connections. Since the network is organized

asymmetrically from the top to the bottom layers, the activity
propagation accordingly occurs from the top to the bottom
layers (Figure 2(f)). During the activity propagation, the
asymmetric connections between object and scene units
support a synchronized activation between corresponding
object and scene units. Then a set of object-place associations
is recalled where individual object-place associations appear
in a sequence [43]. Such a simultaneous activation of
multiple associations is an advantage of the hierarchical
network.

When a small part of the hierarchical network is activated
as an initial cue, an interesting retrieval appears [49]. By
using a global inhibition of the network, initial activation
of units at the top layer results in a sequential retrieval
of all object-place associations. On the other hand, the
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activation of units at the middle layer results in a constrained
retrieval where multiple associations including the visual
feature of the initial cue only are activated (Figure 2(g)). Such
a selective retrieval will relate to the memory search, where
course scene information can evoke a set of possible object-
place associations. In the network, asymmetric connections
are formed to represent inclusion relationships of visual
features; therefore any initial cue of a partial feature is con-
sidered to evoke a set of possible object-place associations.
This property is important for understanding the memory
search mechanism in the hippocampus that maintains a large
memory content.

4.4. Experimental Support for the Model. The model predicts
a positive correlation among saccade rate, EEG theta power,
and memory recall performance. We have evaluated the
prediction by using brain signal analysis of human partici-
pants (see [50] for review). In the EEG measurement during
object-place memory encoding, the EEG 7.0 Hz power and
coherence at central region showed to significantly corre-
late with subsequent successful recall [51]. The coherence
between EEG theta power and saccade rate was also found
to correlate with the subsequent successful recall [52]. These
results indicate that the EEG theta-related neural dynamics
plays an important role in the memory encoding with eye
movement.

Moreover, the results of an EEG-fMRI simultaneous
measurement showed that scalp EEG theta power during
object-place memory encoding is correlated with BOLD
responses in the medial prefrontal, medial posterior, and
right parahippocampal regions [53]. This result did not show
a direct link between the hippocampus and theta dynamics,
but it does suggest that the medial temporal memory system,
consisting of the hippocampus and the parahippocampal
region, uses theta dynamics for memory encoding.

5. Simulation of the Episodic Memory Based on
the Computational Model

It has been shown that memory recall performance of object-
place associations can be predicted by either EEG theta
power [43] or BOLD responses [55] during encoding. This
fact leads to the prediction that the computational model
integrating experimental data could have an excellent ability
in the prediction of a subsequent recall. At the same time,
it produces a good validation of the computational model;
for example, if the brain really uses the dynamic of this
model, then the model should have predictability; otherwise
the model will be rejected.

This section now reviews an application of the computa-
tional model of object-place associations to the prediction
of human subsequent recall by using eye movement data
during encoding [54, 56]. In the analysis, the eye movement
data of our previous report [51] were used that consists
of 350 trials of object-place memory encoding from eleven
subjects. During the task, the participants were asked to
remember identities and locations of four objects in a
3 × 3 grid during 8 seconds. Afterwards, the participants

were asked to reconstruct the arrangement of the objects
by using a mouse on the display after a 10-second delay
period that contains a secondary task of randomly targeted
saccades to inhibit the memory rehearsals (data were also
used to calibrate eye cameras). Both temporal parameters
are sensitive to participants’ correct recall rates, while the
temporal parameters were determined to make the correct
recall rate at around 50%. Each participant performed 30
trials of the encoding task. Trials which failed to record any
eye movement were discarded in the analysis. The interobject
saccade rate of remaining data appeared in normal range
(579.7 milliseconds) and almost all fixations appeared on
each object.

To apply the model to the experimental data analysis, the
visual features of the model were adapted to include object
shapes used in the experiment and multiscaled receptive
fields for location of eye fixation. In the model, a visual input
at a fixation location was represented by 9 object units and
36 scene unit activations. A sequence of eye movement was
translated to a visual input sequence and is stored into a 45×
×45 CA3 connection matrix by using phase precession and
the Hebb rule with an asymmetric time window and then
connection matrices were varied for trials using identical
stimulus (it should be noted that the eye movements were
not stereotyped).

In the statistical procedure, the individual correlation
coefficient of a predictor and human recall were calculated
(Figure 3(a)) and these were averaged over participants. In
order to evaluate the importance of the hierarchal structure
in the recall prediction, following four computational predic-
tors and three traditional experimental predictors were used.
The computational predictors are (1) the connection weight
sum,

∑
i

∑
j wi j , (2) the asymmetric connection weight sum,∑

i

∑
j |wij−wji|, (3) the hierarchical connection weight sum,∑

i

∑
j(hi−hj)(wij−wji), and (4) computational recall evoked

by an initial input to the top layer, where wij denotes a CA3
connection weight from the jth to the ith unit and hi indicates
the hierarchy of the ith unit in the hierarchical network. The
experimental predictors are (5) blink rate, (6) saccade rate,
and (7) EEG 7 Hz power at a central region. The forthcoming
results section will discuss the meaning of these predictors in
more detail.

The results are shown in Figure 3(b). Only three predic-
tors, the hierarchical connection weight sum (r = 0.1154,
P = .0309 < .05), the computational recall (r = 0.1183, P =
.0269 < .05), and EEG theta power (r = 0.1226, P = .0178 <
.05), were found to significantly correlate with the human
recall. This indicates that the computational model receiving
eye movement data has similar predictability with the EEG
theta power. On the other hand, the experimental predictors
of the blink rate (r = −0.0293, P = .5849 > .05) and the
saccade rate (r = 0.0992, P = .0638 > .05) did not show a
significant correlation with the human recall. These results
indicate that the computational network somehow extracted
a memory-dependent component from the eye movement
during encoding. Together with the result of no significant
correlation between other computational predictors and the
human recall (the sum connection weights, r = 0.0802, P =
.1343 > .05; the asymmetric connection weights, r = 0.0984,
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Figure 3: Prediction of human subsequent recall by using the computational model and other behavioral parameters [54]. (a) A
computational model-based analysis of eye movement data during encoding. Computational predictors based on the computational model
storing the visual input sequence were compared with human subsequent recalls. (b) Correlation coefficients between the predictors and
human subsequent recall. Asterisks denote significant correlations (P < .05).

P = .0659 > .05), the hierarchal structure itself is considered
to be an important factor to predict the human recall.

From a computational point of view, the hierarchical
connection weight sum can increase when the eye movement
occurs to evenly catch neighboring and distant pairs of
objects with a saccade interval of more than 250 milliseconds.
In order to experimentally evaluate that point, we further
tested other experimental predictors (e.g., the variance of
fixation duration of individual objects, etc.), while we
have not found a suitable experimental predictor (data not
shown). It is considered that more complicated memory-
related components, such as order of fixated objects, might
be extracted by the model. These results suggest that the
model dynamics exists in the human brain and work during
object-place memory encoding and retrieval.

6. Summary and Future Directions

The computational models of the episodic memory in the
hippocampus and a simulation of the human episodic
memory based on a computational model are reviewed. The
hippocampus has a clear functional role in the episodic
memory with a beautiful anatomical organization; thus
many models have been proposed. A computational model
of the hippocampus based on neural synchronization of
phase precession [43] produces neural dynamics of the
episodic memory formation that is characterized by the
one trial learning of multiple object-place associations and
the selective retrieval realizing memory search. The model
was further applied to experimental data analysis, where a
neural network organized by human eye movement data
was found to have the ability to predict human object-
place memory recall. This suggests that the model’s dynamics

exists in the brain and works during memory encoding
and retrieval. This also indicates the importance of bridging
between the computational model and experimental studies
for theorizing the human episodic memory (Figure 4). In the
following section, questions for future research are discussed.

6.1. Neural Mechanism of Memory Retrieval. Section 4.3
identified that the retrieval of the computational network is
constrained by the initial cue, while the definition of the cue
is a problem for understanding the human episodic memory.
The initial cue could be modeled in the context of a situation,
such as task demand and intentional effort. Such context
information is proposed to be represented in the prefrontal
region [57, 58], and the framework of the computational
model of the hippocampus is developing to include the pre-
frontal and other regions. Recent simultaneous recordings
of the prefrontal region and the hippocampus in rats are
becoming possible [59], and these data give insight to a new
framework of the episodic memory.

6.2. Representation of the Episodic Memory. The represen-
tation of the episodic memory is still an important issue.
In the computational models of cognitive maps in rats, the
representation of cortical inputs to the hippocampus has
been discussed. Hartley et al. [60] proposed a boundary
vector cell (BVC) as a component of the cortical inputs
leading the place cell properties. De Araujo et al. [61]
proposed an angular combination of visual cues and showed
that the size of the visual field is critical for forming the place
and view cell properties in rats and primates. Among Marr’s
three levels of understanding, the level of representation and
algorithm is key to a combination between computational
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Figure 4: Computational model, experiments, and their combined
approach are necessary for theorizing the human episodic memory.

models and experiments. Although there are few computa-
tional proposals on the representation of human episodic
memory, virtual maze experiments in humans [62, 63] might
produce essential data for linking human experience and
episodic memory. Moreover, it will be a great step toward
understanding the human episodic memory outside of the
laboratory.

In addition to the above discussion, it is necessary to
integrate “what” information with “what-where” association
models as discussed. In Section 4, we reviewed a computa-
tional model of object-scene association by using theta phase
precession. The model was also shown to be able to encode
and recall the temporal sequence through asymmetric con-
nections [34, 35], while it might require some balance in
the usage of asymmetric connections for representing both
“what” and “what-where” association. Further evaluation is
necessary in terms of both representation and dynamics for
the comprehensive understanding of the episodic memory.

6.3. Computational Models-Experiments-Combined Ap-
proach. The computational models have been applied to
experimental data analysis of fMRI measurements. Tanaka
et al. [64] applied the temporal difference (TD) learning
algorithm to the BOLD signal analysis and detected a
topographical map of time scales of reward predictions.
Anderson et al. [65] applied their information processing
model to the analysis of BOLD responses and evaluated
functional roles of their region-of-interests. Section 5 indi-
cated that our computational model of the hippocampus
was applied to analyze human eye movement data and
showed its prediction ability for human memory recall.
The model is also applicable to the brain signal analysis
and its performance is now under evaluation. These studies
demonstrated the efficacy of computational model-based
analyses for understanding system-level brain functions.
Recently methods of fMRI signal decoding have been
developed to read the perceptual state of an observer [66].
The computational models mentioned in this text should
contribute to brain signal decoding to validate the existence
of their dynamics within the brain.
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