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Abstract

In the rodent hippocampus, a phase precession phenomena of place cell firing with the local field potential (LFP) theta is
called ‘‘theta phase precession’’ and is considered to contribute to memory formation with spike time dependent plasticity
(STDP). On the other hand, in the primate hippocampus, the existence of theta phase precession is unclear. Our
computational studies have demonstrated that theta phase precession dynamics could contribute to primate–hippocampal
dependent memory formation, such as object–place association memory. In this paper, we evaluate human theta phase
precession by using a theory–experiment combined analysis. Human memory recall of object–place associations was
analyzed by an individual hippocampal network simulated by theta phase precession dynamics of human eye movement
and EEG data during memory encoding. It was found that the computational recall of the resultant network is significantly
correlated with human memory recall performance, while other computational predictors without theta phase precession
are not significantly correlated with subsequent memory recall. Moreover the correlation is larger than the correlation
between human recall and traditional experimental predictors. These results indicate that theta phase precession dynamics
are necessary for the better prediction of human recall performance with eye movement and EEG data. In this analysis, theta
phase precession dynamics appear useful for the extraction of memory-dependent components from the spatio–temporal
pattern of eye movement and EEG data as an associative network. Theta phase precession may be a common neural
dynamic between rodents and humans for the formation of environmental memories.

Citation: Sato N, Yamaguchi Y (2009) A Computational Predictor of Human Episodic Memory Based on a Theta Phase Precession Network. PLoS ONE 4(10): e7536.
doi:10.1371/journal.pone.0007536

Editor: Marcus Kaiser, Newcastle University, United Kingdom

Received June 10, 2009; Accepted September 22, 2009; Published October 23, 2009

Copyright: � 2009 Sato, Yamaguchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by JSPS KAKENHI (19700283) and MEXT KAKENHI (20220003). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: satonao@fun.ac.jp

Introduction

Hippocampal place cells that are selectively activated by a

specific portion of the environment are known to synchronously

fire with local field potential (LFP) in the theta band (4–8 Hz)

during locomotion. O’Keefe and Recce [1] reported an interesting

relationship between place cell firing and LFP theta; phases of

place cell firing to LFP theta gradually advance as the rat passes

through the place field. Multi-unit recording findings further

demonstrated that the individual place cells show different phase

precession patterns [2]. Since the time scale of the phase difference

of two place cell firings in a neighboring place field agrees with a

time window of spike time dependent plasticity (STDP) [3], the

phase precession pattern has been suggested to contribute to the

synaptic plasticity in the hippocampus [2]. Computational studies

have further demonstrated advantages of theta phase precession in

the formation of sequence memory [4,5,6,7], spatio-temporal

patterns [8], cognitive maps [9] and goal-directed navigation in

the environment [10]. Theta phase precession is considered a key

mechanism of memory formation in the rodent hippocampus.

In the primate hippocampus, LFP theta appears intermittently

[11] and place cells also have a firing rate in the theta range

[12,13,14]. Although primate theta phase precession has not been

evaluated, the same dynamics of theta phase precession are shown

to have a computational advantage in the formation of object–

place associative memory [15] that is a typical hippocampus-

dependent memory in humans [16,17,18,19]. In the computa-

tional model of object–place memory, input sequence is given by

visual saccades in relation to a ’view cell’ property [20] where

hippocampal units are selectively activated by eye fixation in the

environment, and by both object and scene information in the

central and peripheral visual field respectively in relation to the

anatomical organization of the parahippocampal region [21]. The

input sequence is translated to a phase precession pattern at the

entorhinal cortex, is transmitted to the CA3 region, and is stored

into unidirectional connections according to STDP. Surprisingly a

hierarchical cognitive map representing object-scene associations

by asymmetric connections is formed in a several second encoding

period. Such memory structure is not a simple trace of input

sequence but organizes individual object-scene associations into

the whole object arrangement similar to a human cognitive map

[22]. The model explains the neural mechanism of real-time

environmental memory formation in humans.

According to the model of object–place memory with theta

phase precession, recall performance is expected to be associated

with electroencephalography (EEG) theta power and eye saccades

during encoding, thus the prediction was evaluated in human

experiments. First, the scalp EEG theta power during memory

encoding significantly correlates with the subsequent recall

performance [23]. The evidence also corroborates EEG results
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of word memory tasks [24,25]. Second, the scalp EEG theta power

is also coherent to saccade rate in relation to the subsequent recall

performance [26]. The EEG theta and saccades cooperate during

memory encoding, as predicted by the model. Third, a

simultaneous EEG and functional MRI measurement further

showed that the scalp EEG theta is correlated to the para-

hippocampal BOLD signal [27]. Although the scalp EEG might

not directly detect the hippocampal LFP activities, the scalp EEG

theta is expected to be a part of the global EEG theta network

combining several brain regions during memory encoding.

In this paper, we evaluated the human theta phase precession

by using a theory-experiment combined analysis. In the analysis,

experimental data of human object–place memory recall were

compared with the individual hippocampal network simulated by

theta phase precession of human experimental data, eye

movement and scalp EEG data during encoding. If similar

dynamics to theta phase precession exist in the human brain, the

individual hippocampal network should have the ability to predict

human subsequent recall, otherwise the model of human phase

precession is rejected.

Results

2.1 Simulated memory with theta phase precession
Fig. 1 shows the model of phase precession used in the analysis

where subjects’ visual experience was stored into the connection

weights in the CA3 network. Fig. 2 shows subjects’ eye movement

and EEG data and temporal evolution of the unit activities in the

model corresponding to these experimental data. Figure 2a and 2b

show eye movement data during 8-sec encoding, where quick

changes of eye positions correspond to eye saccades and stable eye

positions correspond to eye fixation. Figures 2c and 2d indicate

raw EEG data at the CP3 electrode and its wavelet power in the

theta band (7 Hz), respectively. Figure 2e shows the input

sequence of the model where the eye position at each time is

encoded by given visual features (Fig. 1b) during a high EEG theta

power period. The ECII layer receives the input sequence and

translates it into the theta phase precession pattern (Fig. 2f). In

theta phase precession, the ‘‘earlier-later’’ phase relationship of

units represents the time difference of the onset time of these units’

input.

The CA3 layer receives an input sequence encoded by phase

precession, and stores it into connection weights according to the

STDP. Figure 2g shows a resultant CA3 connection matrix after

one trial 8-sec encoding, where the difference of connection

weights along a diagonal line indicates asymmetric connections. In

Figure 2h, the structure of the asymmetric connections is shown by

an equivalent graph of the connection matrix, where each node

represents a population of units with the same input sequence,

each line with an arrowhead denotes directional connections, and

numbers at the side of nodes represent overlap of the node units

(i.e. a number of objects that could activate the node units). For

Figure 1. Basic structure of the model. (a) The model consists of an input layer, the ECII layer and the CA3 layer. Each layer includes 45 units. The eye
movement sequences translated to the model input according to 9 object and 36 scene features. The input sequence is translated to theta phase
precession pattern in the ECII layer, transmitted to the CA3 layer, and stored into connection weights according to a spike timing-dependent plasticity
(STDP). The resultant associative network is expected to simulate subject’s memory. (b) Nine object and 36 scene features used in the model.
doi:10.1371/journal.pone.0007536.g001
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Figure 2. An example of the computational model–human experiment combined analysis. (a) Visual stimulus and eye movement during
an 8 sec-encoding period (subject 4, trial 14). (b) Horizontal and vertical eye fixation on a location in the screen shown by thin and thick lines,
respectively. Time is on the horizontal axis and the x and y positions on the screen are on the vertical axis. (c) Raw and ocular artifact corrected EEG
data at CP3 electrode, shown by red and black lines, respectively. (d) EEG theta power (7 Hz) of the ocular artifact corrected EEG data. (e) Input
sequence of the model. (f) ECII unit activation showing theta phase precession. (g) Resultant CA3 connection weights. (h) Connection weights
represented by equivalent graphs. The nodes indicate subpopulations of units receiving the same visual input sequence. Lines show the connection
weights between nodes, where the red line denotes the direction of the connections. Numbers at the side of the node indicate the number of object
that activates the units in the node. (i) A recalled sequence initiated by a partial scene unit activation.
doi:10.1371/journal.pone.0007536.g002
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example, a node marked by asterisk is only activated by ‘star’ and

‘cross’ objects and the overlap of the node is two. In the graph,

directions of asymmetric connections are always found to appear

from greatest to least overlap of the node units (from the top to the

bottom in the graph). This structure is called a hierarchical

cognitive map of object-place associations [15]. The number of

nodes is restricted by the number of combinations of objects (i.e.

maximum number of 15 in the case of four objects), where the

usage of a spatially continuous receptive field (see, Fig. 1b) results

in smaller number of nodes as shown in the graph. The structure

of the network was evaluated by three predictors, the connection

weights sum, Cs, the asymmetric connection weight sum, Ca, and

the hierarchical connection weight sum, Ch. Spearman’s rank-sum

correlation between the predictor and subjects’ subsequent recall

performance was calculated. In the results shown in Figure 3a, the

hierarchical connection weights sum, Ch, only showed a significant

correlation with the subsequent recall performance (r = 0.1107,

Z = 2.0662, p = 0.0388,0.05), while other predictors, Cs and Ca,

were not significant (Cs: r = 0.0259, Z = 0.3718, p = 0.7100 (n.s.);

Ca: r = 0.0882, Z = 1.6825, p = 0.0925 (n.s.)). Ch is considered to

reflect a spatio-temporal pattern of eye movement orbit that is

stored by theta phase precession. Cs and Ca are considered to

dominantly reflect fixation duration and unidirectionality of eye

movement respectively. But these are not enough to predict the

subsequent recall performance.

The resultant networks were further evaluated by the recall

procedure, where a CA3 unit of the top layer (with overlap of 4) is

initially activated and subsequent activity propagation in CA3

units according to recurrent connections is evaluated. Figure 2i

shows the result of the recall activation that occurs in the time scale

of theta cycle. The temporal evolution of the activity propagation

is plotted in the equivalent graph shown in Figure 2h, where the

color of the node indicates the peak activation time of each node

unit. First the ‘star’ object unit and related scene units are

activated (shown in green color), followed by the ‘sector’ object

unit and related scene units (shown in red color) and finally the

‘cross’ object unit and related scene units (shown in dark red color).

This recall sequence consisting of multiple object–place associa-

tions reflects the whole associative network structure through

dynamics of the excitation of the recurrent connection and the

global inhibition of the unit activation.

The mean number of correctly recalled object–place associa-

tions was 1.74 (s.d. 0.78), significantly smaller than the subject’s

recall performance (mean recalled associations is calculated as 3.31

(s.d. 1.07)). However, the computational recall was significantly

correlated with subjects’ subsequent recall performance

(r = 0.1583, Z = 3.0811, p = 0.0021,0.01) that is larger than the

correlation between the hierarchical connection weight sum, Ch,

and subjects’ recall performance. This result successfully indicates

that theta phase precession dynamics could predict the human

subsequent recall performance.

2.2 Subsequent memory analysis by traditional
predictors

In this section, we evaluate the correlation between experimen-

tal data during encoding and the subsequent memory perfor-

mance. This analysis would reveal the cause of the significant

correlation between computational and subjects’ memory recalls

shown in the above section. First, as an index of subjects’

attentional state, the saccade number, Ss, and the blink number,

Sb, were evaluated. Both predictors were not found to significantly

correlate with subjects’ recall performance (Ss: r = 0.0915,

Figure 3. Results of statistical analysis. (a) Z-score of correlation coefficient between each predictor and subjects’subsequent recall. (b)
Dendrogram of clustering using Ward’s method. Three clusters are found, where the computational and subject’s subsequent recalls appear in the
same cluster.
doi:10.1371/journal.pone.0007536.g003
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p = 0.0773; n.s., Sb: r = 20.0803. p = 0.1193; n.s.). Along with the

result of connection weights sum, , that is dominantly related to the

total fixation duration, simple behavioral parameters that did not

include the spatial property of eye movement were unable to

predict subjects’ recall.

Second, the mean object distance, D, was not significantly

correlated to the subject’s recall performance (r = 20.0775,

p = 0.1458; n.s.). D is an important parameter for the structure

of the associative network, while this result shows that the object

arrangement is not a dominant factor in the prediction of

subsequent recall.

Finally, EEG theta power, Eh and EEG theta–saccade rate

coherence, Ec, were evaluated. Both predictors significantly

correlate with subjects’ memory recall (Eh: r = 0.1226,

p = 0.0178,0.05; Ec: r = 0.1250, p = 0.0164,0.05) [23,26]. The

EEG theta modulation, that gates 50% of the input sequence, is

not a cause of the significant correlation between computational

and subjects’ recalls, because significant correlation was still

obtained without EEG theta modulation (data not shown). It is

rather considered that the eye movement pattern during high

EEG theta was specifically associated with the memory formation.

These results indicate that the model of theta phase precession

produces a better predictor of subsequent recall than the

traditional experimental predictors.

2.3 Clustering analysis among predictors
In order to clarify the relationship of 9 predictors

(Cs,Ca,Ch, R, Ss, Sb, D, Eh, Ec), a hierarchical clustering using

Ward’s method was applied. The resultant dendrogram is shown

in Fig. 3b. Three clusters were found under the threshold of 0.7

maximum Euclidean distance. The first cluster (indicated by blue

color) consisted of three model parameters (Cs,Ca,Ch) and saccade

rate, Ss. This cluster was characterized by eye movement patterns.

The second cluster (indicated by green color) consisted of

computational and subjects’ recalls (R, C) and the EEG theta–

saccade rate coherence, Ec. This result successfully demonstrates

that the computational recall, R, is similar to subjects’ recall when

compared with other indices. This second cluster is characterized

by the interaction between eye movement and EEG theta. The last

cluster (indicated by red color) consists of blink rate, Sb, object

spacing, D, and EEG theta power, Eh, where Sb and Eh are

considered to reflect the attentional state of the subject, and D

could also be associated with the attentional effort. This cluster is

considered to be related to the subjects’ attentional state. These

results clearly indicate that the computational recall has similar

information structure to subjects’ subsequent recall data as

compared with other predictors.

2.4 Predictability of recall sequence
In addition to the prediction of subjects’ recall performance, we

evaluated a relationship between subjects’ and computational

recall orders that may further clarify the dynamic of theta phase

precession. We calculated a correlation index between subjects’

and computational recall orders that we compared with

correlation indices under a randomly shuffled recall order.

Figure 4 shows the result of correlation indices where shuffling

was repeated 10000 times. The correlation index between subjects’

and computational recall orders is significantly larger than the

indices under the randomly shuffled condition (correlation

index = 0.347, p = 0.0002). This result shows that the phase

precession model predicts subjects’ recall order. Together with

the significant correlation between subjects’ recall order and

saccade sequence (p = 0.0010), the model may reflect the subjects’

encoding strategy represented in a saccade sequence.

2.5 Comparison with other models
The model used in the above analysis consists of multiple

dynamics, such as phase precession and EEG theta modulation,

therefore prompting the question of whether all dynamics are

necessary for predicting subjects’ recall. To answer this question,

we evaluated correlation coefficients between subjects’ and

computational recalls by using different models where the effects

of phase precession and/or EEG power modulation are selectively

removed. In the results shown in Figure 5, the computational

recall using the model with the same phase (no phase precession)

and no EEG modulation is not significantly correlated with

subjects’ recall (r = 0.0820, Z = 1.3579, p = 0.1745(n.s.)) On the

other hand, the computational recall by the models with phase

precession or EEG theta modulation were still significantly

correlated with subjects’ recall (with phase precession;

Figure 4. Correlation index between subjects’ and computa-
tional recall orders (red line) and distribution of correlation
indices calculated under the condition of randomly shuffling
recall order. The histogram bin is given by 0.01.
doi:10.1371/journal.pone.0007536.g004

Figure 5. Z-score of correlation coefficient between subjects’
and computational recalls using different models where the
effects of phase precession and EEG modulation are selectively
removed. PP denotes ‘phase precession.’
doi:10.1371/journal.pone.0007536.g005
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r = 0.1404, Z = 1.9798, p = 0.0477,0.05; with EEG theta modu-

lation, r = 0.1109, Z = 2.1154, p = 0.0344,0.05). Moreover, the

computational recall by the model with phase precession and EEG

alpha modulation is not significantly correlated with subjects’

recall (r = 0.0787, Z = 1.1963, p = 0.2316(n.s.)). These results

indicate that the combination of phase precession and EEG theta

modulation is important for predicting subjects’ recall.

Discussion

We demonstrated that the computational model of theta phase

precession can predict subjects’ subsequent recall performance and

that its predictive ability is better than experimental parameters

(Fig. 3a) and other computational models (Fig. 5). Together with

the clustering result of similarity between computational and

subject’s recalls (Fig. 3b), the current finding showed that theta

phase precession can exist in the human brain and produces a

better predictor of the subsequent recall than other traditional

predictors.

3.1 Components forming computational recall
Although the results successfully show that the computational

recall could predict subjects’ subsequent recall (Fig. 3), it is still

unclear why the computational recall could be a good index to

predict subjects’ recall. In this section, we will discuss possible

components differentiating the computational recall from other

predictors. First, spatio-temporal patterns of eye movements

dominantly determine the resultant associative network and the

computational recall. The model consists of multiple spatial scales

of scene units and stores the eye movement pattern in various

spatial scales. These multi-scaled eye movement features charac-

terize the subject’s strategic eye movement that would be related to

the subject’s subsequent recall.

Second, the coherence between eye movement and EEG theta

power also determines the resultant associative network. The eye

movement does not always reflect the subject’s encoding state, but

the EEG theta extracts the encoding-related eye movement. This

is also supported by the results of the cluster analysis (Fig. 3b,

second cluster), where the number of eye saccades appears in a

different cluster.

Finally, the computational recall is a result of the simultaneous

evaluation of the whole associative network formed during 8-sec

encoding. This property is completely different from other computa-

tional predictors (Cs,Ca and Ch). The associative network does not

store individual object–place associations into separate networks but

forms a cognitive map that represents a continuous space and object

association. The computational recall appeared to reflect the

hierarchical structure of the cognitive map with multiscaled scene

information [28], thus the recall is an integrated value of memory

encoding related activity within eye movement and EEG data.

3.2 Theta phase precession in humans
Theta phase precession pattern is in agreement with a time

window of STDP, therefore it is expected to contribute to the

synaptic plasticity, as suggested by Skaggs et al. [2]. Recently,

theta phase precession is reported not only in the dentate gyrus,

CA3 and CA1 regions [1,2] but also in grid cells [29] in the

entorhinal cortex [30]. The grid cells that are activated by the

locations of regular triangular grid-like pattern and theta phase

precession pattern also repeatedly appear. This pattern is also

considered to contribute to the formation of place cells in the

dentate gyrus [31].

Theta phase precession has not been reported in other species,

while theta oscillation in the hippocampus has been considered to

be important for the memory function commonly observed in

many species. For example, bats show transient increase of theta

LFP that would contribute to spatial cognition through echo-

location [32], and the human hippocampus also shows transient

LFP theta increase during navigation tasks [12,14]. Theta

oscillation in the hippocampus may be specifically related to the

formation of environmental memory. Our current analysis

suggests that theta phase precession exists in human brain.

3.3 Theory–experiment combined analysis
For the integrative understanding of the neural dynamics and

the cognitive function, it is essential to combine both proposed

computational models and evaluate them with experimental data.

However, there are not many studies of human experimental data

analysis with a specific computational model. Tanaka et al.

proposed an interesting data analysis where human behavioral

data of a Markov decision task were analyzed according to the

temporal difference (TD) learning rule and applied for BOLD data

analysis in human subjects [33]. This study clearly demonstrated

that a specific neural dynamic, TD leaning rule with different time

scales, exists in the human basal ganglia, and also demonstrated

the ability of theory–experiment combined analysis to understand

human neural dynamics.

In this paper, we used a theory–experiment combined analysis

to elucidate theta phase precession in humans. The results

successfully support the existence of theta phase precession and

the resultant hierarchical cognitive map in humans. While it is still

important to pay attention to ’epiphenomena’, i.e., it is still

possible that ’true’ neural dynamics would have better computa-

tional ability and produce a consistent understanding of

experimental data. To minimize this problem, the functional

advantage of the computational model should validate the model

in addition to the correlation between theory and experimental

data. We have evaluated the functional advantage of theta phase

precession [7,8,9,15], but further studies are necessary.

Methods

The computational model of theta phase precession [15,28] is

used to simulate the individual hippocampal network during

object–place memory task in humans [23]. In this study, the

computational predictors and traditional experimental predictors

were compared with human subsequent recall.

4.1 Experimental data
The analyzed human experimental data were generated as part

of a previous study [23]. Twelve volunteers participated in this

experiment and performed an object-place association memory

task with a recall test during EEG and eye movement recordings.

Binocular eye movements were recorded with a video-based

Eyelink I system (SR Research, Canada) with a 250 Hz sampling.

Saccades and blinks were detected by a modified algorithm

proposed by Engbert and Kliegl [34]. EEG signals were acquired

using a Neuroscan amplifier (NeuroScan, Texas, USA). Ocular

artifacts in the EEG were corrected by using the revised aligned-

artifact average method developed by Croft et al. [35], where the

horizontal electro-oculography (EOG), vertical EOG and radial

EOG are linearly subtracted from raw EEG signal. Instantaneous

frequency–energy characteristics for the corrected EEG were

analyzed by convolution with complex Gaussian Morlet’s wavelet

of which half-length is 6 [36].

Each subject participated in 36 trials. Each trial consisted of an

8-sec encoding phase of four objects randomly selected (subtended

0.4260.42 degrees) and randomly located in a 363 grid square

A Predictor of Episodic Memory
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(565 degrees each), a 10-sec eye camera calibration task, and a

recall test. During the encoding phase, the subjects memorized

both object identities and these locations. During the recall test,

the subjects were asked to reconstruct all object configurations on

the display by using a mouse, where each object sequentially

appears in a grid square by clicking of the mouse button. EEG and

eye movement data of 350 artifact-free trials from eleven subjects

during the encoding were used in the analysis.

4.2 Computational analysis of individual hippocampal
network

The phase precession model of object–place memory [15,28]

was used to analyze the experimental data. The model consists of

the visual input layer, the ECII (layer II in the entorhinal cortex)

layer and the CA3 layer (Fig. 1a) where each layer consists of 9

object units and 39 scene units (Fig. 1b). In agreement with to the

physiological evidence [37,38], ECII units separately represent

object and scene information that are combined in the CA3 layer.

The object units characterize object features at the central visual

field, and these are activated while fixating on a corresponding

object at the center of the field. The scene units characterize a

spatial distribution of eye fixations in the peripheral visual field.

They have a receptive field in the peripheral vision and are

activated when the eye fixation appears in the receptive field.

These visual features are associated with the experimental

stimulus. According to these visual input features, the human

eye movement sequence is uniquely transformed to the input

sequence of the model.

The ECII layer receives the input sequence and produces a

theta phase precession pattern during high amplitude human EEG

theta power in each trial. Phase precession in the entorhinal cortex

has computational advantages in memory formation [7,8,9] that

were recently supported by a rat experiment [30]. This simulates

the intermittent increase of theta LFP in the hippocampus. EEG

theta (at 7 Hz) at a central electrode (CP3) has a possible

relationship with the hippocampal LFP theta [23,24]. Theta phase

precession is transmitted to the CA3 layer and is stored into

connection weights according to the Hebb rule with an

asymmetric time window. Detailed descriptions of the model are

shown in Text S1. Additionally, EEG alpha at 11.5 Hz at a

parietal electrode (P8) showing negative correlation to subjects’

subsequent recall [19] was used to evaluate the influence of EEG

power modulation on the predictability of the model.

The model includes 16 parameters (two parameters in the input

layer, 10 parameters in the ECII/CA3 layer and four parameters

in the Hebb rule), but all parameters of the model were almost

identical to the previous study [15,28], except for input features.

Time constants are key parameters for the memory formation and

corresponded with rodent physiological evidence. The time

window of the STDP is 12.5 ms [3], the theta period is 125 ms,

and the duration of theta phase precession is 1 sec [1,2]. This

relationship, (asymmetric window of Hebb rule , theta cycle ,

duration of theta phase precession), is important to generate theta

phase precession contributing to memory formation, and the small

fluctuation of these parameters is not critical. Details of the

parameters are described in Text S2.

4.2.1 Computational memory encoding. Experimental

data of each subject and trial were separately introduced to the

computational model, i.e., experimental data including 350 trials of

encoding and recall were separately analyzed. The initial condition of

connection weight is given by and the model receives an 8-sec input

sequence given by one trial experimental data of saccade and EEG

during encoding. The resultant network after an 8-sec encoding period

was used to predict subject’s subsequent recall performance. Three

predictors of human subsequent recall were calculated, and each

predictor included 350 values in relation to experimental trial number.

The first predictor is the connection weight sum, Cs, that is related to a

total increase of connection weights. Cs is given by

Cs~
X

i

X
j

wij

where wij is the sum of the connection weight from the j-th to the i-th

CA3 units. Cs does not evaluate the unidirectional connections, so this

is independent to the theta phase precession dynamics. The second

predictor is an asymmetric connection weight sum, Ca, that is related

to a total amount of asymmetric connection weights. Ca is given by

Ca~
1

Cs

X
j

X
iwj

wij{wji

�� ��

Ca and evaluates the amount of unidirectional connections formed by

theta phase precession, while its information structure is not estimated.

The third predictor is the hierarchical connection weight sum, Ch, that

is related to the formation of a cognitive map including object–place

associations. Ch is given by

Ch~
1

Cs

X
j

X
iwj

hi{hj

� �
wij{wji

� �

where hi denotes the number of objects that could activate the i-th unit.

For example, if the i-th unit is activated while fixating on object 1, 2 or

3 and is not activated while fixating on object 4, hi is 3. In the following

section, hi is termed an overlap of the i-th unit. Ch evaluates both the

unidirectional connections and its information structure in terms of a

hierarchical structure of the object-place memory. The above three

predictors would characterize the associative network reflecting the

spatio-temporal properties of subjects’ eye movement and EEG theta

power.

4.2.2 Computational memory recall. The resultant 350

units network was further evaluated by using a computational

recall procedure. In the recall procedure, a scene unit with a

receptive field covering all grids (with unit number 45) was

activated initially. Then other CA3 units were automatically

activated according to the stored recurrent connections. The

global inhibition of the CA3 activation further supports the

sequential activation of the CA3 units. The recalled sequence was

decoded by using input visual features in terms of temporal coding.

The number of successfully recalled object-place associations, R,

was used as a predictor of subject’s subsequent recall. Equations

and parameters of the recall procedure are described in Text S2.

4.3 The traditional experimental predictors
In addition to the four predictors calculated from the model, the

traditional experimental predictors were also introduced. From

eye movement data, saccade rate, Ss, and blink rate, Sb, were

calculated. The mean distance among objects, D, was also

calculated as a stimulus parameter, by

D~
X
k,l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk{xlð Þ2z yk{ylð Þ2

q

where x and y denote horizontal and vertical location of the fixated

grid square. Furthermore, EEG theta power [23] and EEG theta

power (at frontal midline (Fz) electrode)–saccade rate coherence

[26] are already known to predict subsequent memory recall. EEG
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theta power, Eh, and a coherence between EEG theta and saccade

rate, Ec, were also introduced.

4.4 Statistical procedure
The following three analyses were used to evaluate the ability of

theta phase precession dynamics to predict human memory recall

performance. In the first analysis (Section 3.1), the computational–

predictors were calculated (as described in Section 4.2) and their

prediction abilities were evaluated. For each predictor, the

Spearman’s rank–sum correlation with subjects’ recall perfor-

mance was calculated for individual subjects, and then the

correlation coefficients of all subjects were integrated by using

random effect analysis [39]. The difference from 0 (no correlation)

was estimated by using the Z–test. In the second analysis (Section

3.2), the prediction abilities of the traditional experimental

predictors (shown in Section 4.3) were further evaluated and

compared with the prediction ability of the computational

predictors. In the third analysis (Section 3.3), to reveal the

information components organizing the computational predictors,

the interaction among the computational and experimental

predictors was evaluated by using a clustering analysis with a

traditional Ward’s method [40]. In the fourth analysis (Section

3.4), to show the relationship between subjects’ and computational

recall order, a correlation index was calculated as follows,

O~
1

N{1

XN{1

k~1

H ok,okz1ð Þ

where ok denotes the k-th object in the computational recall

sequence and H oi,oj

� �
denotes a binary function showing the

existence of ordered-pair oi,oj

� �
in subject’s recall (if the pair

exists, then 1, otherwise 0). A mean correlation index of each trial

is first calculated for individual subjects and then averaged over

subjects weighted by the number of trials of each subject. The

averaged correlation index is compared with correlation indices

calculated under the condition of randomly shuffled recall order.

Supporting Information

Text S1 The computational model of theta phase precession

Found at: doi:10.1371/journal.pone.0007536.s001 (0.03 MB

PDF)

Text S2 Model parameters and decoding

Found at: doi:10.1371/journal.pone.0007536.s002 (0.02 MB

DOC)
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