めざせ宇宙開発 – 自律移動ロボット飛行プロジェクト Space Development – Autonomous movement robot Flight Project

Group A 森宗誠太 Morisou Seita,松村海斗 Matsumura Kaito,長谷川沙織 Hasegawa Saori,松尾威斗 Matsuo Taketo,山崎颯太 Yamazaki Souta Group B 小林浩也 Kobayashi Hiroya,村上拓馬 Murakami Takuma,永井彬博 Nagai Akihiro,比留川満洋 Hirukawa Mitsuhiro,佐々木光流 Sasaki Hikaru

Introduction

目的 **Purpose**

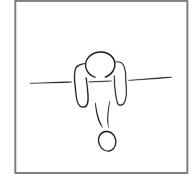
CanSat* の設計・構築・運用を通した, 設計のための理論,構築に必要な技術,運用の経験, プロジェクトそのもの進め方などの学習. *CanSat:小型の模擬人工衛星(缶 Can + 衛星 Satellite)

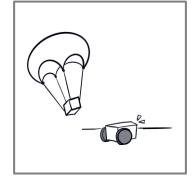
To gain experience and learn some things: theory, technology and process to design, construct and operate CanSat*. *CanSat: a miniaturized simulated satellite

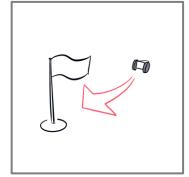
全体ミッション Project's Mission

目的地へ到達できる、姿勢制御と自律移動アルゴリズムを取り入れた機体の製作 Create CanSat that reach the goal, Control attitude, has Autonomous movement algorithm

About Experiments

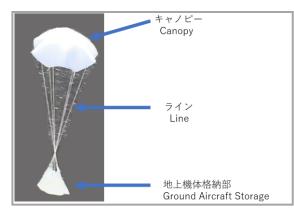

日時 Date: 11/6, 13, 20, 25 13:30 ~ 15:30 場所 Place: 笹流ダム Sasanagare Dam


高度 Dam's Altitude: 25.3 m

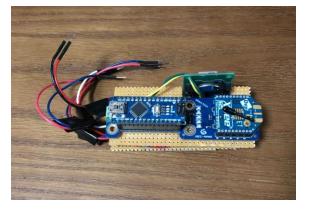


About the Group A

ミッションの流れ **Mission Process**



- 1. ダム頂上から投射 Project from the top of the dam
- 2. パラシュート展開 Parachute unfolds
- 3. 地上を走行開始, 軌跡でお絵描き Start run and draw using tracks
- 4. GPSセンサと9軸IMUを用いてゴールを目指し、走行 Drive toward the goal using GPS sensor and 9-axis sensor
- 5. ゴールから半径10m圏内に入り、走行終了 Enter within a radius of 10m from the goal and finish the run


成功基準 **Success Criteria**

Minimum Success	安全に着地
(60% success)	Landing safely
Middle Success	目標地点に到達 (半径10m以内)
(80% success)	Reach goal (within a radius of 10m)
Full Success	描いた軌跡を画像認識で線として出力
(100% success)	Output the drawn trajectory as a line by image recognition
Advanced Success (120% success)	出力結果と元にした絵の一致率が70%
	The match rate between the output result and the original
	picture is 70%

結果 Results

パラシュート Parachute

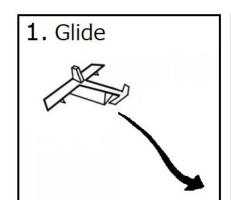
- ・落下速度は平均4m/s で計算通り Posture is stable when falling. Falling directly down without moving forward.
- ・予想着地点に落下しなかった Don't fall to the expected landing point

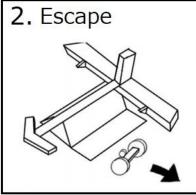
ACS機体本体 Art CanSat (ACS)

- ・不安定な走行 Unstable driving
- →タイヤが不安定,機体の重心が不安定 Instability of tires, Instability of center of gravity of ACS
- ・破損なし、耐久性あり No damage of CanSat, Durable
- ・機体内部のメンテナンスが困難 Difficult to maintain inside ACS
- ・プログラム不良のため走行不能 Unable to drive due to problem of program
- →シリアル通信に問題あり Cause: Serial communication

今後の展望 Future Steps

パラシュート Parachute

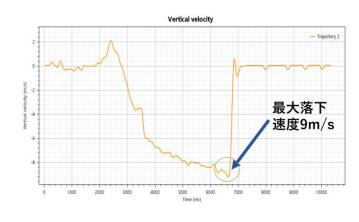

- ・機体を固定できるコンテナの形状(直方体,円錐) Shape of container that can fix ACS (ex: Rectangular, Cone)
- ・より絡まりにくい素材の紐の使用 Use a string made of materials that don't easily get entangled


ACS機体本体 Art CanSat

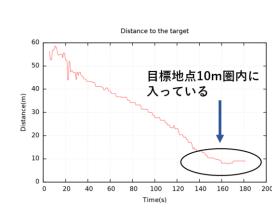
- ・安定性:機体と基板を固定できる構造
- Stability: Structure that can fix ACS and its board
- ・メンテナンス:天板の開閉をできる構造 Maintainability: Structure that can open and close the top plate
- ・プログラム:規模の小さい情報を送受信 Program: Send and receive small size of data

About the Group B

ミッションの流れ **Mission Process**


- 1. ダム頂上から投射 Project from the top of the dam 2. グライダーを用いて滑空
- Glide with a glider
- 3. 着地後、コンテナからローバが脱出し走行 Rover escapes from the container and runs
- 4. GPSセンサと9軸IMUを用いてゴールを目指し、走行 Drive toward the goal using GPS sensor and 9-axis sensor 5. ゴールから半径10m圏内に入り, 走行終了
- Enter within a radius of 10m from the goal and finish the run

Success Criteria


Minimum Success	軟着陸ができて、CanSat本体が走行を開始できる
(60% success)	Soft landing, and CanSat can run
Middle Success	目標地点に到達できる
(80% success)	Reach goal
Full Success	運搬物を壊すことなく目標地点に到達する
(100% success)	Reach goal, and Carry a chalk safely
Advanced Success	ゴール地点を一周する
(120% success)	Go circle of goal point

結果 Results

グライダー Glider

- ・落下時の姿勢は安定。前に進まず真下に落下
- Posture is stable when falling. Falling directly down without moving forward.
- ・落下速度は最大約9m/sとなり、想定より早く落下
- The maximum falling speed is about 9m/s, and it falls faster than expected.

ローバー Rover

- ・着陸時にローバーが破損 Rover damaged during landing.
- ・テスト段階では目標地点への走行に成功
- At the test stage, we succeeded in driving to the target point.
- ・着陸時の運搬物の破損なし No damage to the cargo during landing.

今後の展望 **Future Steps**

グライダー Glider

- ・空力設計を改善 Improve aerodynamic design
- ・折り畳み機構の実装 Implementation of folding mechanism

ローバー Rover

- ・各層接続部の強度確保 Ensuring the strength of each layer connection
- ・サーボモータの動作改善 Improved operation of servo motor
- ・位置と高度センサの誤差改善 Improved position and altitude sensor error

Summary

年間スケジュール Schedule

学習成果 **Learning Outcomes**

- ・模擬人工衛星の製作プロセスの学習 Learn the process to create a miniaturized simulated satellite
- ・CanSatに類似した機体の製作 Create the airframe that is like CanSat
- ・姿勢制御と自律移動アルゴリズムの学習 Learn Control attitude and Autonomous movement algorithm

今後の展望 Future Steps

- ・全体ミッションの遂行 Success Project Mission
- ・CanSat競技大会に準ずる機体の製作 Create CanSat following CanSat Competition
- ・次年度以降, CanSat競技大会出場を目指す Participate in CanSat Competition