
Chapter 10
An Algebraic Approach to Time-Span Reduction

Keiji Hirata, Satoshi Tojo, and Masatoshi Hamanaka

Abstract In this chapter, we present an algebraic framework in which a set of
simple, intuitive operations applicable to music can be flexibly combined to realize a
target application and generate music. We formalize the concept of time-span tree
introduced by Lerdahl and Jackendoff (1983) in their Generative Theory of Tonal
Music (GTTM) and define the distance between time-span trees, on the hypothesis
that this might coincide with the psychological resemblance between melodies heard
by human listeners. To confirm the feasibility of the proposed framework, we conduct
an experiment to determine whether the distance calculated on the basis of the
framework reflects cognitive distance in human listeners. To demonstrate that the
algebraic framework is computationally tractable, we present the implementation of a
musical morphing system that, given two original melodies, generates an intermediate
melody at any internally dividing point between them (i.e., at any ratio).

10.1 Introduction

The analogy between music and natural language has long been discussed (Aiello,
1994; Cook, 1994; Jackendoff, 2009; Molino, 2000; Sloboda, 1985). Our short-term
memory plays an important role in understanding music as well as language (Baroni
et al., 2011). Since short-term memory is used to realize a push-down stack, it can
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accept a context-free grammar (CFG) language. It is commonly accepted that human
language is mostly generated by a CFG in Chomsky’s hierarchy; at the same time, we
often encounter linguistic phenomena that are context-sensitive (Stabler, 2004). Most
sentences can be generated by CFGs, which have long distance dependency and a tree
structure. Thus, we may assume that music is also governed by a CFG-like grammar.
Many natural language researchers have tried to implement music parsers with CFG-
like grammars (Steedman, 1996; Tojo et al., 2006; Winograd, 1968). For another
example of the importance of short-term memory in music, we consider melodic
recognition. In a piece of music, the identical motif or phrase appears repeatedly in
time and/or in other voices. When we recognize such a motif/phrase, this suggests
that we possess an ability to group consecutive notes or parallel phrases together with
the help of short-term memory; this psychological phenomenon is called Gestalt.

Influenced by Noam Chomsky’s framework of transformational generative gram-
mar (Chomsky, 1957, 1965), Lerdahl and Jackendoff (1983) proposed their Gen-
erative Theory of Tonal Music (GTTM). GTTM consists of modules for grouping-
structure analysis, metrical-structure analysis, time-span reduction, and prolonga-
tional reduction. The grouping structure analysis segments a piece of music into
nested groups of varying sizes. The metrical structure analysis identifies the positions
of strong and weak beats at the levels of a quarter note, half note, whole note, and so
on.

The time-span tree is constructed on the basis of the results of the grouping struc-
ture and metrical structure analyses in a bottom-up manner: parts come together to
form wholes, in accordance with the Gestalt principle. Time-span reduction repre-
sents the intuitive idea, originating from Schenkerian analysis, that, if we remove
ornamental notes from a long melody, we obtain a simple melody that sounds similar.
By time-span reduction, an entire piece of music can eventually be reduced to an
important note or a tonic triad. Hence, the time-span tree stands for the progression
of this time-span reduction.

Prolongational reduction represents musical intuitions relating to both the har-
monic and melodic aspects of the global structure of a piece. In contrast to the
time-span reduction, a prolongational tree is constructed in a top-down manner, by
recognizing that parts of a piece—or even entire pieces—exhibit patterns of tension
and relaxation. That is, given a homophonic (i.e., homorhythmic) sequence, an im-
portant note or chord is first selected, and the sequence is then split at that note or
chord.

The rules of GTTM comprise well-formedness rules for specifying all the possible
tree structures on the basis of analyses, along with preference rules for designating
which of the possible tree structures to adopt. As described above, the time-span
and prolongational trees represent aspects of the underlying structure of a piece. The
theory attempts to look for a unique underlying structure by applying the preference
rules. However, a piece can be interpreted in various ways, and, of course, the analysis
occasionally derives more than one time-span tree and prolongational tree.

To understand the relationships between GTTM and Chomsky’s generative gram-
mar more precisely, let us compare the analysis process of GTTM with the derivation
of a sentence using a generative grammar. In Fig. 10.1(a), the meaning of an utter-



10 An Algebraic Approach to Time-Span Reduction 253

Transformational 
rules

Sentence

(a) Chomsky’s Generative Grammar

(b) GTTM

Surface 
structure

Deep 
structure

Semantic 
element

Piece of 
music

Time-span tree & 
Prolongational tree

Motif, 
Structure etc.

Utterance intention

Musical intentionScore Reduction

Phrase 
structure 

rules

Fig. 10.1 Framework for giving meaning to a sentence and a piece of music

ance is represented by its semantic content, which is transformed into deep and then
surface structures by applying the phrase structure rules and the transformational
grammar. These grammar rules give meaning to a transformed tree structure. The
direction of giving meaning is the same as that of producing a sentence.

The time-span tree and prolongational tree are generated from a motif and a
global structure by an elaboration that is the opposite of reduction (Fig. 10.1(b)). The
rules and the roles of tree structures in GTTM are different from those they have in
linguistic generative grammars. Thus, Lerdahl and Jackendoff (1983, p. 9) state that

we have found that a generative theory, unlike a generative linguistic theory, must not only
assign structural descriptions to a piece, but must also differentiate them along a scale of
coherence, weighting them as more or less “preferred” interpretations. . . The preference
rules, which do the major portion of the work of developing analyses within our theory, have
no counterpart in linguistic theory; their presence is a prominent difference between the
forms of the two theories. . .

Thus, a generative grammar usually assigns different derivational trees to different
sentences, mostly in a one-to-one manner (of course, there are exceptions). Ac-
cordingly, in language, the surface structure (a sentence) typically carries enough
information to allow direct manipulation and/or calculation of a derivational tree.
In contrast, in music, the relationship between the surface structure (a score) and a
time-span tree/prolongational tree is more ambiguous due to the preference rules. The
time-span/prolongational tree conveys more precise information of musical meaning
than the surface structure.

This chapter is structured as follows. In Sect. 10.2, we describe an algebraic
framework that formalizes the concept of a time-span tree. We introduce the concepts
of reduction and maximal time-span, define the time-span tree operations join and
meet, and provide a theoretical distance between time-span trees. On the basis of this
development, in Sect. 10.3, we conduct an experiment to confirm the feasibility of
the proposed framework. We compare the cognitive distances of human listeners,
measured experimentally, with those calculated by the framework, and determine
whether the theoretical distances correctly reflect our cognitive reality. Next, in
Sect. 10.4, to illustrate that the combination of primitive operators straightforwardly
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realizes a more complicated operation, we implement a musical morphing system.
As in the previous section, we employ human listeners to determine whether the
morphed melodies generated by the system properly correspond to internally dividing
points between the two original melodies given.

10.2 Formal Treatment of Time-Span Trees

In this section, we will explain our approach and introduce some fundamental defini-
tions and properties relating to time-span trees.

Surface structure

Reduction

?

Order in which
reduction process

is carried out

6

Fig. 10.2 Reduction hierarchy of the chorale, ‘O Haupt voll Blut und Wunden’ from the St. Matthew
Passion by J. S. Bach (from Lerdahl and Jackendoff, 1983, p. 115)
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10.2.1 The Time-Span Tree as a Domain for Modification

We consider that in computational composition or arrangement, it is more promising
to modify the time-span tree than the score itself for the following two reasons. First,
the tree is more meaningful. The time-span tree is organized on the basis of the reduc-
tion hypothesis so that neighbouring pitch events1 are compared in a bottom-up way
in terms of importance, and the less important notes are absorbed into more significant
ones in a hierarchical manner. As a result, we can obtain the fundamental skeleton
of the music (Marsden, 2005). We illustrate this process in Fig. 10.2.2 We can also
use the reduction process to obtain a hypothesis regarding the original intent of the
music, on an analogy with a Chomskyan analysis of natural language (Fig. 10.1(b)).
This relates to the Schenkerian notion that we can retrieve the underlying structure of
a piece by selecting pitch events that represent its tonality (Cadwallader and Gagné,
1998). This selection process exactly corresponds to the reduction hypothesis. In both
theories, as each note is classified according to its rhythmic and/or tonal significance,
it contributes to the formation of a specific interpretation of the music, and, for this
reason, we claim that a hierarchical tree is more meaningful than a raw score.

Second, we can distinguish the realm of formal modification (i.e., composition and
arrangement) from that of listening. In the former, we need to introduce a rendering
process which is the reverse of music analysis. In a time-span reduction analysis, a
tree is constructed on the basis of the reduction hypothesis; whereas, in the rendering
process, a concrete piece of music is created—that is, a musical score is externalized
and made performable and audible (Fig. 10.3). Rendering can be viewed as playing
the role of resolving ambiguity in the musical surface, which relates to the raw score
being less meaningful.

In general, the mapping from musical surfaces to time-span reductions is many-
to-many: for a given piece, there is typically more than one possible time-span tree;
and for a given time-span tree, there is typically more than one possible surface that
has that tree (Marsden et al., 2013). Fig. 10.4(a) shows that two possible time-span

1 A pitch event originally means a single note or a chord. In this work, we restrict our interest to
homophonic analysis as the method of polyphonic recognition is not included in the original theory.
2 Once a piece of music is reduced, each note with onset-offset and duration becomes a virtual note;
it is only meant to be a pitch event that is salient during the corresponding time-span. Therefore,
to listen to a reduced piece of music, we need a rendering process that compensates for this onset-
offset/duration information.
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Fig. 10.4 Samples of ambiguity in time-span reduction analysis and rendering. In (a), the time-span
reduction depends on slurring, which is different in different editions of the piece. In (b), two
different surfaces have the same time-span reduction analysis

trees may exist, depending on the edition of a score that is used. Conversely, in
Fig. 10.4(b), we show that one time-span tree can be rendered in multiple ways, as
the time-span tree does not include rests and the occurrences of a rest in a score have
various realizations.

10.2.2 Maximal Time-Span

The head pitch event of a tree is the most salient event in the tree—i.e., the salient
event dominates the whole tree. As the situation is the same in each subtree, we
consider that each pitch event has its maximal length of saliency, called its maximal
time-span. For example, let us think of two maximal time-spans such that one’s
temporal interval is subsumed by the other’s. Since the longer maximal time-span
dominates a longer interval, we assume that the longer maximal time-span conveys
more information and that the amount of information is proportional to the length
of the maximal time-span. Then, we hypothesize that, if a branch with a single
pitch event is reduced, the amount of information corresponding to the length of its
maximal time-span is lost.

Figure 10.5(a) contains four contiguous pitch events: e1, e2, e3 and e4. Each has
its own temporal span (duration on the surface score) denoted by thin lines: s1, s2, s3
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Fig. 10.5 Reduction of time-span tree and maximal time-span hierarchy; thick grey lines denote
maximal time-spans while thin ones denote pitch durations

and s4. Figure 10.5(b) depicts time-span trees and corresponding maximal time-span
hierarchies, denoted by thick grey lines. The relationship between spans in (a) and
maximal time-spans in (b) is as follows: at the lowest level in the hierarchy, a span
is the same length as a maximal time-span: mt2 = s2, mt3 = s3; at the other levels,
mt1 = s1+mt2, and mt4 = mt1+mt3+ s4 = s1+ s2+ s3+ s4. In the figure, if the
duration of a quarter note is 12 ticks, then s1 = s2 = s3 = s4 = 12, mt2 = mt3 = 12,
mt1 = 24, and mt4 = 48. That is, every span extends itself by concatenating the span
at a higher level along the configuration of a time-span tree. When all subordinate
spans are concatenated into one span, the span reaches the maximal time-span.

10.2.3 Lattice and Join/Meet

Here we consider a sequence of reductions from a tree. First, the relation between
two trees on the sequence becomes the subsumption relation, which is the most
fundamental mereological relation among real-world objects in knowledge repre-
sentation. Since the reduction is generally made in a different order, the sequence
bifurcates, and the set of reduced time-span trees becomes a partially ordered set
(poset).3 Moreover, if we can define join and meet in the set, the set becomes a lattice.

For the base case, we define join and meet of two time-spans (Fig. 10.6). If τA and
τB are separated from each other (that is, they do not temporally overlap), join does
not exist, while meet becomes empty, denoted by ⊥. Next, we consider the inductive
case for a time-span tree. Let σ1 and σ2 be time-span trees. σ1 is subsumed by σ2,

3 Reflexive, anti-symmetric, and transitive set.
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Fig. 10.6 join and meet operators applied to maximal time-spans

denoted by σ1 v σ2, if and only if for any branch in σ1 there is a corresponding
branch in σ2.4 Now let σA and σB be time-span trees for pieces A and B, respectively.

join: If there is a smallest unique y such that σA v y and σB v y, we call such
y the join of σA and σB, denoted by σAtσB.

meet: If there is a largest unique x such that xv σA and xv σB, we call such x
the meet of σA and σB, denoted by σAuσB.

We illustrate join and meet in a simple example in Fig. 10.7. The ‘t’ (join) operation
takes eighth notes in the scores to fill sub-time-span trees so that a missing note in
one side is complemented. On the other hand, the ‘u’ (meet) operation takes ⊥ for
possibly mismatching sub-time-span trees, and thus only the common notes appear
as a result.

In the process of unification between σA and σB, when a single branch is unifiable
with a tree, σAtσB chooses the tree while σAuσB chooses the branch recursively.
Because there is no alternative action in these procedures, σAtσB and σAuσB exist
uniquely. Then, the partially ordered set of time-span trees becomes a lattice, as
mentioned above, where σAtx = σA and σAux = x if xv σA. Moreover, if σA v σB,
then xtσA v xtσB and xuσA v xuσB for any x. In an algebraic lattice where

qq e
‰ t

qq e‰
=

q
q ee

qq e
‰ u

qq e‰
= qq

Œ

Fig. 10.7 Samples of join and meet

4 Currently, we are concentrating on the theory for handling the configurations of trees and the
time-spans based on the subsumption relation introduced above, ignoring pitch events. When we
become able to define the proper subsumption relation between pitch events and integrate both
subsumption relations into a coherent framework, the total theory for handling melodies will be
realized. We consider Lerdahl’s (2001) tonal pitch space theory to be a valid starting point for
developing the subsumption relation between pitch events.
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meet and join exist uniquely, we can easily confirm the absorption law as follows:
(σAtσB)uσA = σA and (σAuσB)tσA = σA.

Tojo and Hirata (2012) provided the data representation of a time-span tree in a
feature structure and mentioned the algorithms for join and meet. The framework we
propose can be considered algebraic because the set of time-span trees works as a
domain and join and meet are operators defined on this set. Moreover, we consider
this algebraic approach to be an implementation of Donald Norman’s (1999, p. 67)
design principle of ‘Simplicity’:

Simplicity: The complexity of the information appliance is that of the task, not the tool. The
technology is invisible.

That is, Norman argued that a user should be provided with a framework in which
a set of simple, intuitive primitives can be flexibly combined to realize an intended
function.

10.2.4 Reduction Distance

We call a sequence of reductions of a piece of music a reduction path. We regard the
sum of the lengths of maximal time-spans lost in going from one tree to another in
the reduction path as the distance between the two trees. We generalize the notion
to be applicable not only between trees in the same reduction path, but also in any
direction in the lattice. We presuppose that branches are reduced only one-by-one, for
convenience in summing up distances. A branch is reducible only in the bottom-up
direction, i.e., a reducible branch possesses no other sub-branches except a single
pitch event as a leaf of a tree.

Let ς(σ) be a set of pitch events in a time-span tree σ and let #ς(σ) be its
cardinality. We denote by se the maximal time-span of event e. The distance dv of
two time-span trees such that σA v σB in a reduction path is defined as follows

dv(σA,σB) = ∑e∈ς(σB)\ς(σA) se.

For example in Fig. 10.5(b), the distance between σ1 and σ4 becomes mt1+mt2+
mt3. Note that, if e3 is first reduced and e2 is subsequently reduced, the distance is
the same. Although the distance appears at a glance to be a simple summation of
maximal time-spans, there is a latent order in the addition, because the reducible
branches are different in each reduction step. To give a constructive procedure to this
summation, we introduce the notion of total sum of maximal time-spans as:

tmts(σ) = ∑e∈ς(σ) se ,

which we call the total maximal time-span. When σA v σB, dv(σA,σB) = tmts(σB)−
tmts(σA). As a special case of the above, dv(⊥,σ) = tmts(σ).

We now consider the requirements for the distance between two trees to be a true
metric. As there is a reduction path between σA uσB and σA tσB, it follows that
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Fig. 10.8 Parallelogram composed of variations No. 2 and No. 5, join and meet. The values in
parentheses are total maximal time-spans

σAuσB v σAtσB and that dv(σAuσB,σAtσB) is unique. Suppose we define the
following two distance metrics:

du(σA,σB)≡ dv(σAuσB,σA)+dv(σAuσB,σB) ,
dt(σA,σB)≡ dv(σA,σAtσB)+dv(σB,σAtσB) .

We immediately obtain the lemma, dt(σA,σB) = du(σA,σB), by the uniqueness of
reduction distance (see Tojo and Hirata (2012) for the outline of a proof). From
here on, we therefore omit {u,t} from d{u,t}, and simply express it as ‘d’. Here,
d(σA,σB) is unique among the shortest paths between σA and σB. Finally, we obtain
the triangle inequality:

d(σA,σB)+d(σB,σC)≥ d(σA,σC) .

For more details on the theoretical background, see Tojo and Hirata (2012).
We show an example in which, given two pieces, the join and meet are calculated

(Fig. 10.8). The two pieces are taken from Mozart’s variations K.265/300e ‘Ah, vous
dirai-je, maman’, variations No. 2 and No. 5. The value in parentheses shows the
total maximal time-span of each time-span tree, as defined above. In Fig. 10.8, if
we let the duration of a quarter note be 12 ticks, the total maximal time-span of
variation No. 2 amounts to 744 ticks, which is the sum of the maximal time-spans
of all notes contained in variation No. 2. Similarly, the total maximal time-span
of variation No. 5 is 654 ticks. According to the definition of distance, we obtain
du = (744−576)+(654−576) = 246, and dt = (822−744)+(822−654) = 246.
Notice that the four time-span trees form a parallelogram because the lengths of
the opposite sides are equal. Then, we have confirmed the lemma on uniqueness of
reduction distance in the proposed framework.
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In general, join and meet of the time-span trees in Fig. 10.8 are possible as long as
the left-/right-branching coincides in every subtree. However, we have enhanced the
algorithm to tolerate the matching between two different directions of branching. In
the current implementation, the join and meet operations have already been improved
to handle unmatched-branching trees so that they preserve the results of join and
meet in the matched-branching trees and satisfy the absorption law, (σAtσB)uσA =
σA and (σAuσB)tσA = σA, and the lemma, dt(σA,σB) = du(σA,σB), even for the
unmatched-branching trees. For more details, see Hirata et al. (2014).

As described in footnote 4, since the subsumption relation between pitch events is
not given, at present, the distance between pitch events is not calculated. Thus, we
suppose that every pitch event occurring in a time-span tree is identical. Therefore,
within the calculation of the distance between time-span trees, join and meet neither
generate a homophonic pitch event nor a chord; that is, let e be such a pitch event, so
we have join(e,e) = meet(e,e) = e.

10.3 Verification: Distance and Cognitive Similarity

In this section, we investigate whether the definition of distance correctly reflects
cognitive reality. For this purpose, we employ human listeners to compare the distance
with intuitive similarity.

The target set of pieces was Mozart’s variations K.265/300e ‘Ah, vous dirai-je,
maman’ (known in English as ‘Twinkle, twinkle little star’). The piece consists of
the theme and 12 variations. In our experiment, we used the first eight bars of the
theme and each variation (Fig. 10.9). Although the original piece includes multiple
voices, our framework can only handle monophony; therefore, the original pieces
were reduced to monophonic melodies. We did this by extracting salient pitch events
from each of two voices, choosing a prominent note from a chord, and disregarding
the difference in octave so that the resultant melody sounded fluid. In total, we used
8-bar excerpts from the theme and 12 variations and thus obtained 78 pairs to be
compared (13C2 = 78).

For the similarity assessment by human listeners, 11 university students partici-
pated in our study, seven of whom had some experience in playing musical instru-
ments. Each participant listened to all pairs of excerpts, 〈m1,m2〉, in a random order
without duplication, and ranked each pair for similarity on a 5-point scale, ranging
from −2 (very different) through to 2 (very similar). To counteract a potential cold
start bias, each participant first heard all 8-bar excerpts without ranking them. To
avoid order effects, each pair of excerpts was presented in both possible orders on
separate trials The average rankings were calculated for each participant and then for
all participants. Finally, we computed a distance matrix based on the participants’
responses.

For the theoretical estimation by the proposed theory, we used the reduction
distance introduced in Sect. 10.2.4. In order to calculate the reduction distance, a unit
of duration must be defined. We set this unit to be one-third of a sixteenth note so
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Fig. 10.9 Monophonic melodies used in the experiment

that pieces in both duple and triple time could be represented (this is the same unit
as used in the examples in Figs. 10.5 and 10.8). The correct time-span trees of the
theme and 12 variations were first created by the authors and cross-checked against
each other.

It was not easy to examine the correspondence between the results calculated
by d(σA,σB) and the psychological resemblance obtained by participants in the
distance matrix. We thus employed multidimensional scaling (MDS) to visualize
the correspondence. MDS takes a distance matrix containing dissimilarity values or
distances among items, identifies the axes to discriminate items most prominently,
and plots items on the coordinate system of these axes. Therefore, the more similar
items are, the closer together they are in the resulting MDS solution.
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Fig. 10.10 Relative distances among melodies in multidimensional scaling

First, we used Torgerson’s (1952) traditional method of scaling in MDS to plot
the proximity among the 13 melodies. However, it was still difficult to find a clear
correspondence between the results calculated by the reduction distance and the
psychological resemblance obtained by participants. We then removed the results
for variations 10–12 (Fig. 10.10). The contributions in MDS are as follows: (a)
Theoretical estimation: the first axis (horizontal) = 0.21 and the second = 0.17; (b)
Human listeners: the first axis (horizontal) = 0.32 and the second = 0.17.

In Fig. 10.10, we can see an interesting correspondence between (a) and (b) in
terms of positional relationships among the 10 melodies. In both (a) and (b), we
find that the Theme and variations 5 and 9 are clustered together (cluster i), that
variations 3 and 4 form a cluster (ii) and that variations 2 and 7 form a cluster (iii).
The positional relationships among clusters i, ii and iii resemble each other. The
positional relationships between variation 1 and the others in (a) and (b) (except for
variation 6) show a similar tendency. Since the contribution in the first axis of (a) is
considered close to the second, by rotating the axes of (a) by 90 degrees anticlockwise,
a more intuitive correspondence between (a) and (b) emerges. On the other hand,
the discrepancy between them is quite apparent; the positional relationship between
No.6 and the others is significantly different.

These results suggest a correspondence between our calculated reduction distance
and intuitive similarity, if we focus on the rhythmic structure (Hirata et al., 2013).
However, in order to claim that our methodology was adequate, we would need to
include pitch similarity (see footnote 4). In addition, we need to carry out further
comparisons with other distance measures, such as Levenshtein (edit) distance and
Earth mover’s distance.
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Fig. 10.11 There are infinitely many σCs (left). On the right, the proposed morphing algorithm

10.4 Application: Melodic Morphing

In image processing, a morphing algorithm takes two images and finds an interme-
diate image. In a similar way, we now propose a new method for composing an
intermediate piece of music, given two existing variations with a common theme.
Let σA and σB be two time-span trees of music, and σC be the expected result of
morphing; we require σC to reside at a point between σA and σB that internally
divides the distance between these two in the ratio M : N, calculated in terms of the
total sum of maximal time-spans (denoted as tmts in Sect. 10.2.4). Note that there are
uncountably many σCs such that the ratio of the distance between σA and σC to that
between σC and σB is M : N. This is because σC resides at any point on the straight
line that crosses at such an internally dividing point of M : N and forms an angle of
90 degree with the line segment between σA and σB (the left-hand side of Fig. 10.11).
Thus, we should restrict σC to the one that resides on the line segment between σA
and σB, respectively.

Our morphing algorithm, shown on the right-hand side of Fig. 10.11 (Hirata et al.,
2014), consists of the following steps:

1. Given the time-span trees of two melodies σA and σB, calculate meet(σA, σB).
2. Find a time-span tree α that divides the line between σA and meet(σA, σB) in the

ratio of N : M by removing pitch events in order from σA.
3. Similarly, find β that divides the line between σB and meet(σA, σB) in the ratio

of M : N.
4. Calculate join(α , β ).
5. Obtain a real piece of music by rendering the result of join(α , β ).

We see that the four time-span trees, {α,β ,meet(σA,σB), join(α,β )}, form a par-
allelogram, as in Fig. 10.8. Clearly, in terms of the distance between σA and σB,
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we have d(σA,σB) = d(σA, join(α,β )) + d(join(α,β ),σB). Moreover, tmts(σA)≤
tmts(join(σA,σB))≤ tmts(σB) holds if tmts(σA)≤ tmts(σB).5

Here, we add two more comments on the morphing algorithm. The first concerns
the unmatched-branching in join, i.e., the unification of left- and right-branching trees.
In the current implementation, we interpret the value of join as the superimposition of
the differently branching nodes of two time-span trees. Thus, the result of join simply
becomes a chord of two notes sounding simultaneously. Otherwise, for instance, it
could be rendered as a transformation of the superimposed time-spans.6

The second issue concerns the rendering algorithm itself. The current rendering
algorithm works in a top-down manner so that a maximal time-span is basically
regarded as a horizontal line segment in a piano-roll representation, and the time-
spans at lower levels (closer to the leaves) overwrite those at higher levels. Thus, the
entirety of the maximal time-span may be overwritten by the lower-level time-spans;
that is, even though a pitch event is quite salient, it may become inaudible, or its
assigned duration in a real score may become very short. Consequently, there are
cases where the simple top-down algorithm does not generate a proper melody. Thus,
we are considering algorithms that, for example, integrate some bottom-up process
with the current top-down one; alternatively, we may employ a new process, based on
GTTM, for determining whether the rendering process generates a correct melody.

The morphing algorithm is implemented in SWI-Prolog (SWI, 1987). The target
set of pieces was again Mozart’s variations K.265/300e ‘Ah, vous dirai-je, maman’.
In this experiment, we took the first 8 bars of each of the variations 1, 2, and 5 as the
sources for morphing (Fig. 10.12). We have chosen these three variations because, for
every pair of these three variations, we can calculate join—that is, the maximal time-
spans are all correctly concatenated. The morphed melodies are shown in Fig. 10.12
between the scores of the variations. For example, “No.2&No5 1:1” means the
morphed melody at the midpoint of variations 2 and 5. Ratio “1:3” indicates the
position of the internally dividing point, e.g., “No.2&No5 1:3” means the internally
dividing point is closer to variation 2 than it is to variation 5. Thus, the bottom three
melodies in Fig. 10.12 are formed by morphing variations 1 and 5, with different
ratios of internal division. We see that the melodic patterns are gradually changed in
accordance with the ratio in distance.

Next, taking “No.2&No.5 1:1” as an example, we examine the morphing calcula-
tion in more detail. For convenience of explanation, we show only the first bars of
variations 2 and 5 and intermediate time-span trees α and β (Fig. 10.13). In the figure,
the intermediate time-span trees are shown in the rendered melodies. Time-span
tree α is generated by dividing σA (variation 2) and meet(σA, σB) in the ratio of
1 : 1. Then, α is generated by removing some reducible branches in σA one-by-one
so that tmts(α) = (tmts(σA) + tmts(meet(σA,σB)))/2. This condition means that
tmts(α) is positioned at the centre of tmts(σA) and tmts(meet(σA,σB)). Similarly, β

is generated by removing some reducible pitch events in σB. Finally, by joining α

and β , we obtain the first bar of “No.2&No.5 1:1” in Fig. 10.12.

5 tmts means total maximal time-span, as introduced in Sect. 10.2.4.
6 This resembles the notion of a transformation head (Lerdahl and Jackendoff, 1983, p. 155).
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Fig. 10.12 Variations 1, 2, and 5, and morphed melodies between them
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Fig. 10.13 Detailed morphing calculation of first bars of No.2&No.5 1:1
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Fig. 10.14 Relative distance among variations and morphed melodies according to the impression
of human listeners

For the similarity assessment of the morphed melodies by human listeners, six
university students participated in our study, four of whom had played musical instru-
ments for five years or more. We used the same experimental method as described in
Sect. 10.3. A participant listened to all pairs 〈m1,m2〉 in a random order without dupli-
cation, where mi (i ∈ {1,2}) were either variations 1, 2 or 5 or the morphed melodies
between them, such as “No.2&No.5 M : N”. The experimental results were used to
construct a distance matrix between these three variations and the morphed melodies
between them. We then visualized the results using multidimensional scaling (MDS)
(Fig. 10.14).

As can be seen in Fig. 10.14, for variation pairs, 〈1,2〉 and 〈1,5〉, the morphed
melodies lie near the midpoints between the original variations, as expected. On
the other hand, the position of “No.2&No.5 1:1” is problematic. As can be seen in
Fig. 10.12, the number of notes in “No.2&No.5 1:1”, which is supposed to be at the
midpoint between variations 2 and 5, seems to be the average of the numbers of notes
in variations 2 and 5. However, “No.2&No.5 1:1” is almost entirely made of eighth
notes, and, as a result, many notes co-occur temporally. This may help to explain
why this intermediate melody was perceived by participants as being more similar to
variation 5 than variation 2.

10.5 Conclusions

In this chapter, we began by focusing on the structural information provided by a time-
span reduction tree produced in accordance with Lerdahl and Jackendoff’s (1983)
Generative Theory of Tonal Music (GTTM), where the process of reduction reflects
the hierarchical abstraction of the music. Then, we introduced the concept of maximal
time-span and formalized the time-span tree; thus, as the subsumption relation exists
between trees, the set of trees is a partially ordered set (poset) and is qualified as
a domain for computational processing and modification. Next, we defined such
primitive operations as join/meet on this domain, thus generating a distributive lattice
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from this poset. We are then able to define more complicated algebraic operations,
combining join/meet operations. As we can numerically measure the length of a
maximal time-span, we can define the notion of a distance between trees on a
reduction path as being the sum of reduced time-spans. Extending this idea, we were
able to define the distance between any two arbitrarily chosen trees in the lattice.

To assess the feasibility of the proposed framework, we conducted two experi-
ments. In the first, we focused on the similarity between variations, and compared
the reduction distance of our framework with the psychological distance of human
intuition. As we discussed in Sect. 10.3, we found a correspondence between the
computed reduction distance and experimentally determined intuitions of similarity,
when we focused on rhythmic structure. However, further experiments need to be
carried out on distance measures that take pitch structure into account, and these
measures need to be compared with other metrics that have been proposed in the
literature. Next, we implemented a music morphing system in order to illustrate that
a combination of primitive operators realizes a more complicated operation. Since
the distance between time-span trees defined in our framework satisfies the proper
geometric properties, we could locate the internally dividing point on a line segment
with a simple ratio. We also found that such geometric positioning coincides to some
extent with the cognitive intuition of human listeners.

In order to develop and deploy our proposed framework, we need to consider
the following issues. The first concerns music rendering, which is the process of
realizing a musical score from a time-span tree as we discussed in Sect. 10.2.1. In
fact, the applicability of our framework seems to depend strongly on the quality of the
rendering. There are many possible algorithms for the rendering process besides the
one described in Sect. 10.4. Ideally, a rendering algorithm would restore the original
pitch and duration of each note, since the algorithm can be viewed as the reverse of
the analysis process shown in Fig. 10.3. However, this is rarely the case in practice.
One practical strategy might be to employ machine learning on a large database
of pieces paired with their time-span trees. Here, we considered the “round-trip”
scenario in which a time-span tree, obtained by carrying out a time-span reduction
analysis, can be rendered as a real score which can then be re-analysed to generate a
time-span tree. Conversely, we could first have considered the process of generating a
tree from a musical surface, and then rendering the tree again to produce a (possibly
different) piece of real music. In this way, we would be able to assess the fidelity of
the analysis and rendering processes.

Thus far, we have provided only meet and join as primitive operators and shown
an example of music morphing by the combination of these operations. Indeed, if
we can extend the notion of such simple arithmetic operations in the domain of
time-span trees, we will be able to benefit from richer music manipulation systems.
An even more expressive algebra might be achieved by introducing a complement
or inverse element to make the set a group. As join behaves intuitively as addition
and meet as multiplication, introducing a complement could enhance the algebra by
allowing operations analogous to subtraction and division. As the current lattice we
have obtained is distributive, in our future work, we intend to employ the relative
pseudo-complement for each tree and apply it to a new arithmetic operation in a
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pseudo-Boolean (Heyting) algebra. This would provide us with much more expressive
methods for arranging time-span trees.

Although we have selected time-span trees as the semantic domain in our frame-
work, there are other possibilities. For example, we could incorporate the concept of
reduction into the implication–realization theory (Narmour, 1990). This is another
direction that we intend to explore in our future work.
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