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Abstract. Time-span tree is a stable and consistent representation of musical
structure since most experienced listeners deliver the same one, almost indepen-
dently from context and subjectivity. In this paper, we pay attention to the re-
duction hypothesis of the tree structure, and introduce the notion of distance as
a promising candidate of stable and consistent metric of similarity. First, we de-
sign a feature structure to represent a time-span tree. Next, we regard that when a
branch is removed from the tree the information corresponding to its time-span is
lost, and suggest that the sum of the length of those removed spans is the distance
between two trees. We will show that the distance preserves uniqueness in multi-
ple shortest paths, as well as the triangle inequality. Thereafter, we illustrate how
the distance works as a metric of similarity, and then, we discuss the feasibility
and the problem of our methodology.
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1 Introduction

As is remarked in [26],an ability to assess similarity lies close to the core of cognition.
Musical similarity is multi-faceted as well [15], and this property inevitably raises a
context-dependent, subjective behavior [14]. As to context dependency, similarity can-
not be perceived in isolation from the musical context in which it occurs. Volk stated
in [22]: Depending on the context, similarity can be described using very different fea-
tures. For instance, the impact of cultural knowledge may degrade a stable similarity
assessment. As to subjectivity, similarity is likely perceived differently between sub-
jects and even within a subject, depending on listening style, preference, and so on. For
instance, [23] revealed that the inconsistency in the annotations by experts is caused by
the divergence of four musical dimensions (rhythm, contour, motif, and mode).

Thus far, many researches have explored stable and consistent musical similarity
metrics as a central topic in music modelling and music information retrieval [9, 4].
Some of them are motivated by engineering demands such as musical retrieval, clas-
sification, and recommendation [15, 7, 18], and others are by modelling the cognitive
processes of musical similarity [5, 6]. In this paper, we also seek for a stable and con-
sistent similarity, postponing context-dependency and subjectivity later. We regard that
similarity is stable in the sense that similarity assessment is performed only on a score
of music, disregarding such context-dependent factors as timber, artist, subject matter
of lyrics, and cultural factors. Also, we regard that similarity assessment is consistent
in the sense that most experienced listeners can deliver same results as long as the
western-tonal-classical style of music is targeted.
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2 Satoshi Tojo and Keiji Hirata

To propose a stable and consistent similarity, we rely on the cognitive reality or per-
ceptual universality of music theory. As addressed in [24],systems which aim to encode
musical similarity must do so in a human-like way. Now, we take the stance thattree
structure underlies such cognitive reality. Bod claimed in his DOP model [1] that there
lies cognitive plausibility in combining a rule-based system with a fragment memory
when a listener parses music and produces a relevant tree structure, like a linguistic
model. Lerdahl and Jackendoff presumed that perceived musical structure is internally
represented in the form of hierarchies, which means time-span tree and strong reduction
hypothesis in Generative Theory of Tonal Music (GTTM, hereafter) [16, p.2, pp.105-
112, p.332]. Dibben argued that the experimental results show that pitch events in tonal
music are heard in a strict hierarchical manner and provide evidence for the internal
cognitive representation of time-span tree of GTTM [3]. Wiggins et al. deployed dis-
cussions on the tree structures and argued that they are more about semantic grouping
than about syntactic grouping [25]. We basically follow their view, under which we as-
sume the time-span tree of a melody represents its meaning. Here, we need to admit
that GTTM has its innate problem, that is, those ambiguous preference rules may result
in multiple time-span analyses; [8] has solved this issue, assigning a parametric weight
to each rule, and has implemented an automatic tree analyzer.

In effect, tree representation has contributed to the study on similarity. Marsden
began with conventional tree representations and allowed joining of branches in the
limited circumstances with preserving the directed acyclic graph (DAG) property for
expressing information dependency [13]. As a result, high expressiveness was achieved,
while it was difficult to define consistent similarity between melodies. Valero proposed
a representation method dedicated to a similarity comparison task, called metrical tree
[21]. Valero used a binary tree representing the metrical hierarchy of music and avoided
the necessity of explicitly encoding onsets and duration; only pitches needed to be en-
coded. As a measure to compare metrical trees, Valero adopted the tree edit distance
with many parameters, which were justified only by the best performance in experi-
ments, but not by cognitive reality.

Among the properties of time-span tree, in particular, we consider the concept of
reductionessential, when a time-span tree subsumes a reduced one. Selfridge-Field
also claimed that a relevant way of taking deep structures (meaning) into account is to
adopt the concept of reduction [19]. Since the subsumption relation between time-span
trees can be defined as a partial order, the above consideration may imply a possibility
for treating time-span tree (i.e., the meaning of a melody) as a mathematical entity. Our
objective is to derive the notion of distance from the reduction and the subsumption
relation, to employ it as a metric of similarity. At this time, our attitude toward the
design is strictly computational; that is, there must lie a reliable logical and algebraic
structure so that we will be able to implement the similarity onto computers.

In the following Section 2, we translate a time-span tree into a feature structure,
carefully preventing the other factors from slipping into the structure, to guarantee sta-
bility. In Section 3, we define a notion of distance between time-span trees and then
show that the notion enjoys several desirable mathematical properties, including the tri-
angle inequality. In Section 4, we illustrate our analysis. In Section 5 we discuss open
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Structural SimilarityBased on Time-span Tree 3

problems concerning how we can apply our notion of distance to music similarity, and
in Section 6 we summarize our contribution.

2 Time-Span Tree in Feature Structure

In this section, we develop the representation method for time-span tree in [11, 10], in
terms of feature structure. First we introduce the general notion of feature structure, and
then we propose a set of necessary features to represent a time-span tree. As the set of
feature structures are partially ordered, we define such algebraic operations asmeetand
join and show that the set becomes alattice. Since this section and the following section
include mathematical foundation, those who would like to see examples first may jump
to Section 4 and come back to technical details afterward.

Surfacestructure

Reduction

?

Ordering of
reduction

performed

6

Fig.1. Time-span reduction in GTTM (Lerdahl and Jackendoff [16, page 115])
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2.1 Time-Span Tree and Reduction

A melody is considered to be a sequence of pitch events in temporal order, consisting
of a single note and a chord. Time-span reduction [16] assigns structural importance
to each pitch events in the hierarchical way. The structural importance is derived from
the grouping analysis, in which multiple notes compose a short phrase called a group,
and from the metrical analysis, where the regular alternation of strong and weak beats
affects. As a result, a time-span tree becomes a binary tree constructed in bottom-up
and top-down manners by comparison between the structural importance of adjacent
pitch events at different hierarchical levels.

Fig. 1 shows an excerpt from [16] demonstrating the concept of reduction. In the
sequence of reductions, each level should sound like a natural simplification of the pre-
vious level.3 The alternative omission of notes must make the successive levels sound
less like the original. Hence, reduction can be regarded as rewriting an expression to an
equivalent simpler one; it often has the same meaning as abstraction. Since reduction
is designed based on Gestalt grouping, the reduction successfully associates a melody
with another one that sounds quite similar. The key idea of our framework is that reduc-
tion is identified with the subsumption relation, which is the most fundamental relation
in knowledge representation.

2.2 Feature Structure and Subsumption Relation

Feature structure (f-structure, hereafter) has been mainly studied for applications to
linguistic formalism based on unification and constraint, such as Head-driven Phrase
Structure Grammar (HPSG)[2, 17]. An f-structure is a list of feature-value pairs where
a value may be replaced by another f-structure recursively. Below is an f-structure in
attribute-value matrix (AVM) notation whereσ is a structure, the label headed by ‘˜ ’
(tilde) is thetypeof the whole structure, andfi’s are feature labels andvi’s are their
values:

σ =

[
t̃ype
f1 v1

f2 v2

]
.

A type requires its indispensable features. When all these intrinsic features are properly
valued, the f-structure is said to befull-fledged.

Now we define the notion ofsubsumption. Letσ1 andσ2 be f-structures.σ2 sub-
sumesσ1, that is,σ1 ⊑ σ2 if and only if for any(f v1) ∈ σ1 there exists(f v2) ∈ σ2

and v1 ⊑ v2. Since we suppose an f-structure is considered to be the conjunctive
set of feature-value pairs, ‘⊑’ corresponds to the so-called Hoare order of sets (e.g.,
{b, d} ⊑ {a, b, c, d}). For example, by assumingv1 ⊑ [f3 v3], σ1 below is subsumed
both by the followingσ2 andσ3.

σ1 =

[
t̃ype1
f1 v1

]
, σ2 =

[
t̃ype1
f1 v1

f2 v2

]
, σ3 =

[
t̃ype1

f1

[
t̃ype2
f3 v3

]
]

.

3 Once amelody is reduced, each note with onset and duration properties becomes a virtual note
that is just a pitch event dominating a corresponding time-span, omitting onset and duration.
Therefore, to listen to a reduced melody, we assume that it can be rendered by regarding a
time-span as a real note with such onset timing and duration.
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Structural SimilarityBased on Time-span Tree 5

Since bothσ2 andσ3 are elaborations ofσ1, which are differently elaborated, ordering
‘⊑’ is a partial order, not a total order like integers and real numbers. Equivalencea = b
is defined asa ⊑ b ∧ b ⊑ a.

To denote valuev of featuref in structureσ, we writeσ.f = v. Thus,σ1.f1 = v1

andσ1.f2 is undefined whileσ3.f1.f3 = v3. We call a sequence of featuresf1.f2. · · · .fn

a feature path. Structure sharing is indicated by boxed tags such asi or j . Theset

value{x, y} means the choice either ofx or y, and⊥ means that the value is empty.
Even for⊥, any featurefi is accessible though⊥.fi = ⊥.

2.3 Time-Span Trees in F-Structures

We name the type of an f-structure corresponding a time-span treet̃ree.

Definition 1 (Tree Type F-structure) A full-fledged t̃ree f-structure possesses the
following features.

– head represents the most salient pitch event in the tree.
– span represents the length of the time-span of the whole tree, measured by the

number of quarter notes.
– dtrs (daughters) are subtrees, whose left and right are recursivelyt̃ree. This dtrs

feature is characterized by the following two conditions.

• The value of span must be the addition of two spans of the daughters.
• The value ofhead is chosen from either that ofleft or of right daughter.

If head = dtrs.left .head , the node has the right-hand elaboration of shape, while
if head = dtrs.right .head , the left-hand elaboration . If dtrs = ⊥ then the tree
consists of a single branch with a single pitch event at its leaf.

Fig. 2 shows the examples. Such bold-face letters asC4, E4 andG4 are pitch events.

C4 G4

qq
Œ

(a)

σA

C4 E4 G4

qq e
‰

(b)

σB

(c)




t̃ree

head j .head

span 3

dtrs

[
left j C4

right G4

]


 (d)




t̃ree

head i .head
span 3

dtrs




left




t̃ree

head i .head
span 2

dtrs

[
left i C4
right E4

]




right G4







Fig.2. Melodies (a) and (b) and their f-structures (c) and (d), respectively.
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The value ofhead feature is occupied bỹevent f-structure; a full-fledged one
should includepitch, onset, anddurationfeatures. For example,

C4 =




t̃ree

head




ẽvent
pitch C4
onset . . .
duration 1




span . . .
dtrs ⊥




.

2.4 Unification,Join and Meet

Intuitively, unification is a process of information conjunction. We introduce the set
notation of an f-structure using the set of feature-path-value pairs:{(f11. · · · .f1n v1),
(f21. · · · .f2m v2), · · · }. Unification is the consistent union of f-structures in the set
notation, results in another f-structure. Unification fails only if there exists an inconsis-
tency in any feature-path-value pair.

The set of f-structures are partially ordered as there is the subsumption relation.
Here, we can introducejoin andmeetoperations;Joincorresponds to a union of sets or
a consistent overlay whilemeetdoes to intersection or the common part.

Definition 2 (Join) Let σA and σB be full-fledged f-structures representing the time-
span trees of melodiesA andB, respectively. If we can fix the least upper bound ofσA

andσB , that is, the leasty such thatσA ⊑ y andσB ⊑ y is unique, we call suchy the
join of σA andσB , denoted asσA ⊔ σB .

Theorem 3.13 in Carpenter [2] provides that the unification of f-structuresA andB
is the least upper bound ofA andB, which is equivalent tojoin in this paper. Similarly,
we regard the intersection of the unifiable f-structures asmeet.

Definition 3 (Meet) Let σA andσB be full-fledged f-structures representing the time-
span trees of melodiesA andB, respectively. If we can fix the greatest lower bound of
σA andσB , that is, the greatestx such thatx ⊑ σA andx ⊑ σB is unique, we call such
x the meet ofσA andσB, denoted asσA ⊓ σB .

We show a musical example in Fig. 3.
Obviously from Definitions 2 and 3, we obtain the absorption laws:σA ⊔ x = σA

andσA ⊓ x = x if x ⊑ σA. Moreover, ifσA ⊑ σB , for anyx x ⊔ σA ⊑ x ⊔ σB and
x ⊓ σA ⊑ x ⊓ σB .

We can defineσA ⊔ σB and σA ⊓ σB in recursive functions. In the process of
unification betweenσA andσB , when we are to match a subtree with a single branch
in the counterpart, if we always choose the subtree the result becomesσA ⊔ σB and if
we always choose the single branch we obtainσA ⊓ σB . Because there is no alternative
action in these procedures,σA ⊔ σB andσA ⊓ σB exist uniquely. Thus, the partially
ordered set of time-span trees becomes alattice.

Since time-span treeT is rigidly corresponds to f-structureσ, we identifyT with σ
and may callσ a tree in the following sections as long as no confusion.
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qq e
‰

σA

qq e‰

σB
q

q ee

σA ⊔ σB

qq
Œ

σA ⊓ σB

���

���HHH

HHH

Fig.3. JoinandMeetoperations of time-span trees

3 Strict Distance in Time-Span Reduction

In this section, we introduce the notion of distance between two time-span trees. We
propose that:

If a branch with a single pitch event is reduced, the information corresponding
to the length of its time-span is lost.

Thus, we regard the accumulation of such lost time-spans as the distance of two trees in
the sequence of reductions, calledreduction path. Thereafter, we generalize the notion
to be feasible, not only in a reduction path but in any direction in the lattice. Finally in
this section, we show the distance suffices the triangle inequality. Again as this section
includes technical details, those who would like to see examples earlier may skip this
section and can come back later.

We restrict that branches are reduced only one by one, for the convenience to sum
up distances. A branch isreducibleonly when there exists no other lower branch than
its junction (attaching point); thus, a reducible branch possesses a single pitch event at
its leaf. In the similar way, we restrict that a branch can be an elaboration of some tree
only when it consists of a single event and can be attached to a junction under which
there is no other branch.

By the way, theheadpitch event of a tree structure is the representative of the
whole tree, whose length appears atspanfeature. Though the event itself retains its
original shorter duration, we may regard its supremacy is extended to the tree length.
The situation is the same as each subtree. Thus, we consider that each pitch event has
the maximal length of dominance.

Definition 4 (Maximal Time-span) Each pitch event has the maximal time-span within
which the event becomes most salient, and outside the time-span its supremacy is lost.

In Fig. 4, a reducible branch on pitch evente2 has the time-spans2. After e2 is
reduced, branch one1 becomes reducible and the connected spans1 + s2 becomese1’s
maximal time-span, though its original duration wass1. Finally, aftere1 is reduced,e3

dominates the length ofs1 + s2 + s3. Whene2 ande1 are reduced in this order, the
distance betweenσA andσC becomess2 + (s1 + s2).
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8 Satoshi Tojo and Keiji Hirata

Fig.4. Reduction by maximal time-spans; gray thick lines denote maximal time-spans while thin
ones pitch durations.

Prior to the formal definition of distance, we imposeHead/Span Equality Condition
(HSEC, hereafter):

σA.head = σB .head & σA.span = σB .span.

We have included this restriction in the following algorithm, so as to avoid any futile
comparison; if the identity of two heads and their time-spans is disregarded, the distance
between them is meaningless.

Let ς(σ) be a set of pitch events inσ, ♯ς(σ) be its cardinality, andse be the maximal
time-span of evente. Since reduction is made by one reducible branch at a time, a
reduction pathσB = σn, σn−1, . . . , σ2, σ1, σ0 = σA suffices♯ς(σi+1) = ♯ς(σi) + 1.
For each reduction step, when a reducible branch on evente disappears, its maximal
time-spanse is accumulated as distance.

Definition 5 (Reduction Distance) The distanced⊑ of two time-span trees such that
σA ⊑ σB in a reduction path is defined by

d⊑(σA, σB) =
∑

e∈ς(σB)\ς(σA) se.

Although the distance is a simple summation of maximal time-spans at a glance, there
is a latent order in adding the spans, for reducible branches change dynamically in the
process of reduction. In order to give a constructive procedure on this summation, we
introduce the notion of total sum of maximal time-spans.

Definition 6 (Total Maximal Time-span) Giveñ tree f-structureσ,

tms(σ) =
∑

e∈ς(σ) se.

We presenttms(σ) as a recursive function in Algorithm 1.
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Structural SimilarityBased on Time-span Tree 9

Input: a t̃ree f-structureσ
Output: tms(σ)
if σ = ⊥ then1

retur n 0;2

else ifσ.dtrs = ⊥ then3

retur n σ.span;4

else5

caseσ.head = σ.dtrs.left .head6

retur n tms(σ.dtrs.left) + tms(σ.dtrs.right) + σ.dtrs.right .span;7

caseσ.head = σ.dtrs.right .head8

retur n tms(σ.dtrs.left) + tms(σ.dtrs.right) + σ.dtrs.left .span;9

Algorithm 1 : Total Maximal Time-span

In Algorithm 1, Lines 1–2 are the terminal condition. Lines 3–4 treat the case that
a tree consists of a single branch. In Lines 6–7, when the right subtree surrender to the
left, the left extends the domination rightward byσ.dtrs.right .span. Ditto for the case
the right-hand side overcomes the left, as Lines 8–9.

WhenσA ⊑ σB , from Definition 5 and 6,

d⊑(σA, σB) =
∑

e∈ς(σB)\ς(σA) se =
∑

e∈ς(σB) se − ∑
e∈ς(σA) se

= tms(σB) − tms(σA).

As a special case of the above,d⊑(⊥, σ) = tms(σ).
Next, we consider the notion of distance that can be applicable to two trees reside

in different paths.

Lemma 1 For any reduction path fromσA ⊔ σB to σA ⊓ σB , d⊑(σA ⊓ σB, σA ⊔ σB)
is unique.

Proof As there is a reduction path betweenσA ⊓σB andσA ⊔σB , andσA ⊓σB ⊑ σA ⊔
σB, d⊑(σA ⊓ σB , σA ⊔ σB) is computed by the difference of total maximal time-span
in Algorithm 1. Because the algorithm returns a unique value, the distance is unique.

Theorem1 (Uniqueness of Reduction Distance)If there exist reduction paths from
σA to σB , d⊑(σA, σB) is unique.

Lemma 2 d⊑(σA, σA ⊔ σB) = d⊑(σA ⊓ σB, σB) andd⊑(σB , σA ⊔ σB) = d⊑(σA ⊓
σB, σA).

Proof From set-theoretical calculus,ς(σA ⊔ σB) \ ς(σA) = ς(σA) ∪ ς(σB) \ ς(σA) =
ς(σB)\ς(σA)∩ς(σB) = ς(σB)\ς(σA⊓σB). Then, by Definition 5,d⊑(σA, σA⊔σB) =∑

e∈ς(σA⊔σB)\ς(σA) se =
∑

e∈ς(σB)\ς(σA⊓σB) se = d⊑(σA ⊓ σB, σB).

Definition 7 (Meet and Join Distances)

– d⊓(σA, σB) = d⊑(σA ⊓ σB , σA) + d⊑(σA ⊓ σB , σB) (meet distance)
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10 SatoshiTojo and Keiji Hirata

– d⊔(σA, σB) = d⊑(σA, σA ⊔ σB) + d⊑(σB , σA ⊔ σB) (join distance)

Lemma 3 d⊔(σA, σB) = d⊓(σA, σB).

Proof Immediately from Lemma 2.

Lemma 4 For any σ′, σ′′ such thatσA ⊑ σ′ ⊑ σA ⊔ σB , σB ⊑ σ′′ ⊑ σA ⊔
σB, d⊔(σA, σ′)+d⊓(σ′, σ′′)+d⊔(σ′′, σB) = d⊔(σA, σB). Ditto for the meet distance.

Now the notion of distance, which was initially defined in the reduction path asd⊑

is now generalized tod{⊓,⊔}, and in addition we have shown they have the same values.
From now on, we omit{⊓, ⊔} from d{⊓,⊔}, simply denoting ‘d’.

Theorem 2 (Uniqueness of Distance)d(σA, σB) is unique among shortest paths be-
tweenσA andσB .

Note that shortest paths can be found in ordinary graph-search methods, such as
branch and bound, Dijkstra’s algorithm, best-first search, and so on.

Corollary 1 d(σA, σB) = d(σA ⊔ σB, σA ⊓ σB).

Proof From Lemma 2 and Lemma 3.

Theorem3 (Triangle Inequality) For anyσA, σB andσC , d(σA, σB)+d(σB , σC) ≥
d(σA, σC).

Proof From Corollary 1 and by definition,

d(σi, σj) = d(σi ⊔ σj , σi ⊓ σj) =
∑

e∈ς(σi⊔σj)\ς(σi⊓σj)
se.

Since we employ the set-notation of f-structure (cf. Sec-
tion 2.4), the relationship betweenσ{A,B,C} can be de-
picted in Venn diagram. Then,d(σA, σB) + d(σB , σC)
becomes the sum of maximal time-spans inς(σA ⊔σB) \
ς(σA ⊓σB) plus those inς(σB ⊔σC)\ς(σB ⊓σC), which
corresponds to(f + g + b + c) + (a + c + d + f) =
a + b + 2c + 2f + d + g in the diagram. On the con-
trary,d(σA, σC) becomes the sum ofa+ b+d+ g. Since
(a+b+2c+2f +d+g)−(a+b+d+g) = 2c+2f ≥ 0,
we obtain the result.

In theabove proof,c andf are counted twice because branches in these areas are
once reduced and later added, or once added and later reduced. This implies that these
reduction/addition can be skipped and there exists a short cut betweenσA andσC with-
out visitingσB .

Finally in this section, we suggest that the distance can be a metric of similarity
between two music pieces. As long as we stay in the lattice of reductions underHSEC,
the distance exactly reflects the similarity. However, even thoughheads andspans are
different in two pieces of music, we can calculate the similarity with our notion of
distance. We show such examples in Section 4.
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4 Examples

In this section, we illustrate our analyses. The first example is Mozart’s K265,Ah!
vous dirais-je, maman, equivalent toTwinkle, Twinkle, Little Star. The melody in the
left-hand side of Fig. 5 is the theme, while those in the right-hand side are the third
variation and its reduced melodies in downward order. The horizontal lines below each
score are the maximal time-spans of pitch events though we omit explicit connection
between events and lines in the figure. The lines drawn at the bottom level in each
score correspond to reducible branches (i.e., reducible pitch events) at that step. For
example, from Level c in the right-hand side of Fig. 5 to Level b, eight maximal time-
spans of1/3-long disappear by reduction, thus, according to Algorithm 1 the distance
is 1/3×8 = 8/3. The configuration of maximal time-spans at Level a in the right-hand

Fig.5. Reduction ofMozart: Ah! vous dirais-je, maman

of Fig. 5 quite resembles that in the left-hand side, which is the theme of the variation.
Actually, since the difference between (1) and Level a is the rightmost quarter note in
the 4-th measure, the distance between these two is so close as just 1. This implies that
we can retrieve the theme by reducing the variation.

In Fig. 6, we have arranged various reductions originated from a piece. As we can
find three reducible branches inA we possess three different reductions:B, C, andD.
In the figure,C (shown diluted) lies at the back of the lattice where three back-side
edges meet.

The distances, represented by the length of edges, fromA to B, D to F , C to E,
and G to H are same, since the reduced branch is common. Namely, the reduction
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12 SatoshiTojo and Keiji Hirata

Fig.6. Reduction lattice

lattice becomes parallelepiped,4 and the distances fromA to H becomes uniquely2 +
2 + 2 = 6, which we have shown as Theorem 1. We exemplify the triangle inequality
(Theorem 3); fromA throughB to F , the distance becomes2+2 = 4, and that fromF
throughD to G is 2+2 = 4, thus the total path length becomes4+4 = 8. But, we can
find a shorter path fromA to G via D, in which case the distance becomes2 + 2 = 4.
Notice that the lattice represents the operations ofjoin andmeet; e.g.,F = B ⊓ D,
D = F ⊔ G, H = E ⊓ F , and so on. In addition, the lattice is locally Boolean, beingA
andH regarded to be⊤ and⊥, respectively. That is, there exists a complement,5 and
Ec = D, Cc = F , Bc = G, and so on.

In the next example, we compare two time-span trees in reduction. The left-hand
side in Fig. 7 isMassa’s in De Cold Ground(Stephen Collins Foster, 1852) and the
right-hand side isLondonderry Air(transposed to C major). The vertical distance is
strictly computable in each reduction, but in addition, we may notice that these two
pieces are quite near in their skeletons in the abstract levels. Especially, we should
compare the configurations of maximal time-spans in the bottom three levels and find
them topologically equal to each other. This means the distance becomes 0, beingHSEC
disregarded. Then, in the next section, we discuss how to compute the distance where
HSECdoes not hold.

4 In thecase of Fig. 6, as all the edges have the length of2, the lattice becomes a cube.
5 For any memberX of a set, there existsXc andX ⊔ Xc = ⊤ andX ⊓ Xc = ⊥.
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Fig.7. Reduction processes ofMassa’s in De Cold GroundandLondonderry Air

5 Discussion

In this section, we discuss several open problems. In Section 2, we have introduced
the representation of time-span tree in f-structure andjoin andmeetoperations, which
however only work properly underHSEC. From a practical point of view, this condi-
tion is too restrictive for arbitrarily given two melodies. We found thatMassa’s in De

Fig.8. flexible matching

657



14 SatoshiTojo and Keiji Hirata

Cold GroundandLondonderry Airdo not share strictly common time-span trees, but
are somewhat similar as a result of reduction as in Fig. 7. Since we actually recognize
a flavor of similarity in them, we have a good reason to seek for a more flexible mech-
anism to mapheads andspans as in Fig. 8 injoin andmeetcomputation. The situation
is same for the comprison of pitch events residing atheadfeature. For the purpose, we
have to provide the subsumption relations in time-spans and in pitch events, grounded
to cognitive reality; if these partial orders truly coincide with our intuition or perception,
we can tolerate the condition of unificaiton.

The similarity measures widely used in data mining and information retrieval in-
clude Jaccard, Simpson, Dice, and Point-wise mutual information (PMI) [20]. For in-
stance, the Jaccard index (also known as Jaccard similarity coefficient) is regarded as
an index of the similarity of two sets.

sim(σA, σB) =
|σA ⊓ σB |
|σA ⊔ σB | ,

Here, wemay näıvely interpret ‘|σ|’ as the set of pitch events in the tree as ‘♯ς(σ)’.
However, the number of notes does not fully reflect the internal structure. Then, it may
be appropriate to weight an individual note by its time-span, and the content of a struc-
ture hence amounts to the total maximal time-spantms(σ) in Definition 6, as

sim(σA, σB) =
tms(σA ⊓ σB)

tms(σA ⊔ σB)
.

Since thevalue of tms(σ) represents the complexity of the whole structure, we can
also consider thedensityof notes in the music piece. Similarly, we may make use of
Simpson index withtms as follows:

sim(σA, σB) =
tms(σA ⊓ σB)

min(tms(σA), tms(σB))
.

We have treated the maximal time-spans evenly, independent of their lengths and
levels at which they occur. However, suppose we listen to two melodies of the same
length; one is with full of short notes while the other with a few long notes, then the
psychological lengths of these two melodies may be different. This effect is actually
well known as the Weber-Fechner law; the relationship between stimulus and percep-
tion is logarithmic in auditory and visual psychology. Since our initial purpose of this
paper has been to present a stable and consistent similarity, we could not reflect such
perceptional aspects.

6 Conclusions

In this paper, we relied on the strong reduction hypothesis of the tree structure in GTTM,
and presented the notion of metric of similarity, based on the distance of reduction. In
order to do that, we first designed an f-structure to represent a time-span tree, and we
showed that itsheadfeature andspanfeature properly reflected the original structure
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proposed in GTTM. Thereafter, we regarded that a reduction was the loss of informa-
tion, and the loss was quantified by the time-span of a reduced event. We defined the
notion of distance by the lost time-span, and have generalized the notion as the metric
of similarity. We have shown several mathematical properties concerning the metric,
including uniqueness of distance in any shortest paths as well as the triangle inequality.

Our contribution in this paper is two-fold. One is that we have presented a stable
and consistent metric of similarity, which does rely on neither subjective nor context-
dependent factor. The other is that our metric is mathematically so sound that it can be
employed in the framework of well-known traditional measures, such as Jaccard/Simpson
indices.

At present, we have the following five open problems entangled each other. First, (i)
if we are to apply our unification mechanism such asjoin andmeetoperations to practi-
cal problems, e.g., melodic morphing, we need to easeHSEC. Also, (ii) we need more
statistical witness in comparison of such existing metrics as Jaccard/Simpson indices,
referring to a large-scale music database. As was mentioned in Section 5, (iii) we have
treated the maximal time-spans evenly, disregarding the psychological length of music.
Since we have postponed such subjective and context-dependent metric, we are obliged
to face this aspect from now. By the way, (iv) we still have various alternatives to render
each reduced event on actual staff. Though we have mentioned this in the footnote 3 in
Section 2.1, the problem is left undone. Finally, (v) the more fundamental problem is
the reliability of time-span tree. We admit that some processes in the time-span reduc-
tion is still fragile and proper reduction is not promised yet. Thus far we have tackled
the automatic reduction system, and even from now on we need to improve the system
performance. All in all, to apply such an objective metric to practical cases we need
further consideration, that would be our future works.
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