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Abstract. In constructive music theory, such as Schenkerian analysis
and the Generative Theory of Tonal Music (GTTM), the hierarchical
importance of pitch events is conveniently represented by a tree struc-
ture. Although a tree is intuitive and visible, such a graphic representa-
tion cannot be treated in mathematical formalization. Especially in the
GTTM, the conjunction height of two branches is often arbitrary, con-
trary to the notion of hierarchy. As even a tree is a kind of graph, and a
graph is often represented by a matrix, we show the linear algebraic rep-
resentation of a tree, specifying the conjunction heights. Thereafter, we
explain the ‘reachability’ between pitch events (corresponding to infor-
mation about reduction) by the multiplication of matrices. In addition we
discuss multiplication with vectors representing a sequence of harmonic
functions, and suggest the notion of stability. Finally, we discuss oper-
ations between matrices with the objective of modelling compositional
processes with simple algebraic operations.

Keywords: Time-span Tree, Prolongational Tree, Generative Theory
of Tonal Music, Matrix, Linear Algebra

1 Introduction

Schenkerian analysis suggested a layered structural importance of pitch events
and showed the existence of an innate skeleton of music in a hierarchical way.
As a more modern theory of this musical hierarchy, the Generative Theory of
Tonal Music (GTTM) [3] aims at constructing two kinds of tree: Time-span tree
and Prolongational tree.

The time-span tree in Fig. 1 shows that the C is more salient than the
succeeding E and F�, but surrenders to the final event G. Such a tree is roughly
represented by a sequence

(C†(E†F�))(DG†)†

where the parentheses mean a bifurcation and the dagger ‘† specifies the choice
of more salient branch. Thus, the formula corresponds to the tree in Fig. 1.
But, this representation with parentheses and daggers lacks information on the
duration of pitch events. Even when we add the information on duration for each
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Fig. 1. Time-span tree

pitch event, the tree cannot be fixed uniquely, as there remains the arbitrariness
as to the height of junction point of branches.

We have proposed the notion of Maximum Time-span (MTS) of each pitch
event, as the longest temporal interval during which the event is most salient
[1, 2]. If a leaf pitch event does not have branching, i.e., there is no subordinate
pitch event, the MTS is the original duration. At the other extreme, the MTS of
the event that reaches the top of the tree is the whole length of the music piece.
Here, we can write the MTS of Fig. 1 as in Fig. 2.

Fig. 2. MTS for the tree

We can naively represent the tree in a matrix as in Fig. 3, left-hand side,
where a pitch event in the column is connected to the one in each row with
the height indicated by the matrix cell value. Or, the height is relativized if we
regard the entire height should be 1, as in the right-hand side of the figure. (We
arbitrarily show the top event to be connected to itself. This allows the maximum
time-span for each pitch event to be read from the row of that pitch event. This
choice is justified further in the representation explained in Section 2.)

But, these matrices in Fig. 3 do not possess sufficient non-zero diagonal el-
ements, i.e., its rank is lower than its size, and are not regular. In this paper,
we propose an algebraically tractable and musically meaningful matrix repre-
sentation. In the following Section 2, we formally define a matrix for a music
piece. In Section 3 we also introduce the multiplication by a vector of harmonic
functions and in that process we discuss the notion of stability of tree. In Sec-
tion 4 we discuss the meaning of multiplication of matrices. In Section 5 we
summarize our contribution and discuss the future direction, especially for new
arrangement/composition methods by algebraic operations.
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⎛
⎜⎜⎜⎜⎝

C E F� D G

C 0 0 0 0 2
E 1 0 0 0 0
F� 0 .5 0 0 0
D 0 0 0 0 1
G 0 0 0 0 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

C E F� D G

C 0 0 0 0 1/2
E 1/4 0 0 0 0
F� 0 1/8 0 0 0
D 0 0 0 0 1/4
G 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Fig. 3. Height Information by MTS and its relative representation

2 Tree Representation

Now, let us define our representation. If two consecutive pitch events have the
durations d1 and d2, and the first one is more salient than the second (i.e.,
more fundamental in the melodic structure, in the sense used by Lehrdahl and
Jackendoff [3]), the MTS would be mts1 = d1+d2 and mts2 = d2. This situation
is depicted in Fig. 4.

( e1 e2

e1 l1 0
e2 l1 − l2 l2

) ( e1 e2

e1 l1 l2 − l1
e2 0 l2

)

Fig. 4. Relation between branch length and MTS

In Fig. 4, each branch length, that is l1 and l2, is proportional to its MTS
though the angles versus the horizontal line are not fixed and thus arbitrary.
Nevertheless, notice that the junction height correctly reflects the relation of the
lengths of two branches when they are mapped to a hypothetical vertical axis.
The matrix below each figure in Fig. 4 represents the tree configuration. For
example, the (2, 1)-element of the left matrix shows that the second pitch event
(e2) is connected to the first (e1) with the height relative to l1 − l2.

Let the above be the base case of recursive construction of a tree. Then, given
two subtrees in matrices M1 and M2 we consider to connect them in one tree, as
follows. First, there are the most salient pitch events pi and pj in M1 and M2,
respectively, and let their branch lengths be li and lj . The whole tree, consisting
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of the two subtrees, becomes such a disjoint union of matrices:

(
M1 0
0 M2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
li . . .

. . .
. . .

lj

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If pj is more salient than pi, the branch lengths for pi would be added to lj as

l̂j ≡ li + lj . Thus, we revise the new matrix as in the left-hand side of Fig. 5. In

the case pi is more salient than pj the revision would be l̂i ≡ li + lj and all li
are replaced with l̂i as in the right-hand side of Fig. 5.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
li · · · · · · · · · l̂j − li. . .

...
. . .

...
. . .

l̂j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
l̂i
...

. . .
...

. . .
...

. . .
l̂i − lj · · · · · · · · · lj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Fig. 5. The result of combining two subtrees by left branching (left) and right branching
(right)

Ex. Let a sequence of two pitch events p1 and p2 be connected by right branch-
ing, with the branch lengths of l1 and l2, respectively. Also, let p3 and p4 be
connected by left branching and have the lengths of l3 and l4, respectively. Then,
the initial disjoint union becomes the left-hand side of Fig. 6. Now suppose p4

⎛
⎜⎜⎝

l1 0 0 0
l1 − l2 l2 0 0

0 0 l3 l4 − l3
0 0 0 l4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

l1 0 0 l̂4 − l1
l1 − l2 l2 0 0

0 0 l3 l̂4 − l3
0 0 0 l̂4

⎞
⎟⎟⎠ .

Fig. 6. Example of disjoint union

is more salient than p1. Then, the top of the tree becomes left branching, and
thus l̂4 ≡ l4 + l1 appears at (1, 4)-position, and remaining l4 are all replaced

with l̂4, as in the right-hand side of Fig. 6. (This is equivalent to adding l1 to all
the existing non-zero elements in the column for p4.) Note that the adequacy of
(1, 4)-element is justified as in Fig. 7. ��

Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

129



On Linear Algebraic Representation of Time-span and Prolongational Trees 5

Fig. 7. Relation between four branches

3 Reachability and Harmonic Stability

We now consider how the reduction path for pitch events can be represented
and used in a matrix. Let i < j < k for a sequence of pitch events pi. Then,
cij > 0 and cjk > 0 imply that pi is connected to pj and pj is connected to
pk. Thus, pi can reach pk via pj by two steps, or, equivalently, pi is reduced
to pk via pj . We can represent these remote connections explicitly in the ma-
trix through multiplication of the matrix by itself. For simplicity, we replace all
non-zero elements by 1 (since we are only concerned here with the existence of
connections, not their height) and use Boolean addition for ‘+’ (1 + 1 = 1) in
the matrix multiplication. We call this a topology matrix derived from the tree
representation. For example,

M2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

2

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1

1 1 0 0 1

1 1 1 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

The reachability of all pitch events is shown by M̃ = Mk where k ≤ n is the
number of the maximum number of branching in the tree and M (k+1) = Mk.

M3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 1

1 1 1 0 1
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

In a reachability matrix like this, non-zero elements in a row indicate all the
pitch events which are in the reduction path above a pitch event in the hierarchy,
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i.e., which are heads of higher-level spans which cover the event. The non-zero
elements in a column indicate the pitch events which are below a pitch event in
the hierarchy, i.e., the sub-tree below a pitch event.

We believe that this representation can help to distinguish ‘stable’ from ‘un-
stable’ configurations in a prolongational tree, a concept which is not clearly
defined in Lerdahl and Jackendoff’s theory. We illustrate this through a discus-
sion of two cases from GTTM.

Fig. 8. The Theme of K.331 [3, p.141]

In Lerdahl and Jackendoff’s time-span reduction of the first half of the theme
of the first movement of Mozart’s piano sonata in AMajor K.331, shown in Fig. 8,
the V at the end of the first phrase is connected to the opening I and the I at the
beginning of the second phrase is connected to the closing cadence. In outline,
the matrix representation of this is as follows.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 · · · pi pj · · · pn

p1 1 · · · · · · 1
...

...
. . .

...
pi 1 · · · 1 0 · · · 0

pj 0 · · · 0 1 · · · 1
...

...
. . .

...
pn 0 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lerdahl and Jackendoff consider the options for converting this time-span
tree into a prolongational tree, as illustrated in Fig. 9. The central dominant
may be attached to the cadence or the central tonic may be attached to the be-
ginning tonic. Lerdahl and Jackendoff claim that the second is the better option.
While the reasons are musically clear, they are not rigorously defined. We believe
that combining a reachability matrix with a vector representing the sequence of
harmonic functions may lead to a more rigorous definition of the stability of com-
peting trees. Multiplying the reachability matrix of a time-span tree by a vector
of harmonic functions, using simple concatenation for ‘+’, produces a vector of
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harmonic sequences. Since each row of the matrix represents the reduction path
for each pitch event, the sequences of this vector show the sequence of harmonies
governing each event.

Fig. 9. Stability Comparison in K.331 by Mozart [3, p.141, 223]

Below, we show the three reachability matrices for the K.331 example, and
their multiplication by the appropriate vector of harmonic functions. (1) corre-
sponds to the time-span tree, (2) to the case where the central tonic is attached to
the initial tonic, and (3) where the central dominant is attached to the cadence.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · 1...
. . .

...

1 · · · 1 0 · · · 1

0 · · · 0 1 · · · 1...
. . .

...
0 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I1...
V1

I2...
V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

I1 +V-I...
I1 +V1 +V-I

I2 +V-I...
V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · 1...
. . .

...

1 · · · 1 0 · · · 1
1 · · · 0 1 · · · 1...

. . .
...

0 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I1...
V1

I2...
V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

I1 +V-I...
I1 +V1 +V-I
I1 + I2 +V-I...

V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)
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⎛
⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · 1...
. . .

...

0 · · · 1 0 · · · 1

0 · · · 0 1 · · · 1...
. . .

...
0 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I1...
V1

I2...
V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

I1 +V-I...
V1 +V-I
I2 +V-I...

V-I

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

The two central harmonic sequences in the resultant vector change with the
changed branching. The branching which Lerdahl and Jackendoff reject for the
prolongational tree (3) produces a sequence which begins with the dominant
V1, which is less stable than one beginning with the tonic I2. The preferred
branching (2) is the same as the result for the time-span tree except that the
tonic which starts both middle sequences is the initial tonic I1, putting all the
main pitch events of the theme in the context of the overall motion from initial
to final tonic (I1 to V-I).

Fig. 10. The time-span tree of St. Anthony Chorale, register simplified

In their introduction to prolongational reduction, Lerdahl and Jackendoff
present both time-span and prolongational trees for the theme of Brahms’ varia-
tions on the ‘St. Anthony Chorale’ [3, p.203-210] (Fig. 10). We have represented
both these trees by matrices and calculated the results of multiplying them by
the vector of harmonic functions, according to our own analysis of the harmony.
The results are too large to show in full here, so we report only the significant
differences. Of the 65 sequences in the resultant vector, 39 are different for the
prolongational tree compared to the time-span tree. The most common change
(13 cases, including two with a further change) is in sequences which, in the
case of the time-span tree, began with V, corresponding to the V after the dou-
ble bar. Because this is attached to the initial tonic in the prolongational tree,
these sequences now begin with I. As discussed above, we believe this may be
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an indicator of a more stable tree. The next most common change is to replace
instances of vi V I by just I (6 cases). The progression vi V is allowed by some
harmonic theories (e.g., [4]) but not by others (e.g. [5]), and in any case it is
not common, so this change too could be regarded as contributing to greater
stability. On the other hand, the next most common change (4 cases) replaces vi
V I by vi I, which is worse. In 4 other cases V is ommitted from I V I sequences
to yield only repetitions of the tonic, which makes little difference to stability.
In 3 cases the progression vi I is replaced by just I, counterbalancing the intro-
duction of the questionable progression vi I in the cases referred to previously.
The remaining cases are smaller in number: replacing IV6 V by IV6 ii6 V, which
improves stability (2 cases); replacing viib7/V V I by viib7/V I, which is worse
because the diminished seventh does not resolve regularly (2 cases); replacing I64
V I by I64 ii6 V I, which is irregular (2 cases); adding IV6

4 after I V7/IV, which
is better because it gives the resolution of the applied dominant seventh V7/IV
(2 cases); replacing I V6

4 by V IV6
4, which is neutral (1 case); and replacing I vi

I by I V vi I, which is also neutral (1 case).
A majority of the changes in harmonic sequences in the result of multiplying

the reachability matrix of the preferred prolongational tree by the vector of
harmonic functions can be explained as producing a harmonically more stable
tree than the time-span tree in both of these examples. However, the theory
of what constitutes harmonic stability, especially in this context, is not well
developed and requires further research.

4 Multiplication of Matrices

Matrices representing height, as defined above, can also be multiplied, but to
preserve their meaning it is important that some values remain unchanged, as in
the case of multiplying boolean matrices above. This can be achieved by defining
the multiplication and addition operations to be used in matrix multiplication as
follows. For the elements of two matrices A = (aij) and B = (bij), let aij ∗ bij ≡
min(aij , bij) and aij⊕ bij ≡ max(aij , bij). Obviously, these are commutative and
associative. Since all the elements in the matrices are equal to or larger than
zero, x ∗ 0 = 0, x ∗ x = x, y ⊕ 0 = y, and y ⊕ y = y.

Proposition 1. (x ∗ (x− y))⊕ (y ∗ (x− y)) = x− y where x ≥ y.

Proof Since x ≥ x − y, x ∗ (x − y) = x − y. If x − y ≥ y then y ∗ (x − y) = y
and thus (x− y)⊕ y = x− y. Otherwise, x− y < y, then y ∗ (x− y) = x− y and
(x− y)⊕ (x− y) = x− y. ��

This proposition shows that in the matrix representation of a fundamental
binary tree, either one of x and y is superordinate and the height information
becomes |x− y|.

Proposition 2. All the diagonal elements remain as the same values when a
matrix is multiplied by itself.
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Proof Let A = (aij) and note that aij > 0 (i 	= j) implies aji = 0. Then (i, i)-
element in A2 is equal to

∑n
j=1 aij ∗ aji = aii ∗ aii = aii. ��

This multiplication gives information about reachability, as before. For ex-
ample, in the tree represented in the matrix below, the second pitch event can
reach the fourth, as non-zero (2, 4)-element appears by the multiplicaton.

⎛
⎜⎜⎝

l1 0 0 l4 − l1
l1 − l2 l2 0 0

0 0 l3 l4 − l3
0 0 0 l4

⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝

l1 0 0 l4 − l1
l1 − l2 l2 0 (l1 − l2) ∗ (l4 − l1)

0 0 l3 l4 − l3
0 0 0 l4

⎞
⎟⎟⎠

However, it is not clear what the value min(l1 − l2, l4 − l1), calculated by
the height times the height, means in musical terms. Also, while the result of
multiplying or repeatedly multiplying a matrix by itself is always a valid reach-
ability matrix, this is not true when multiplying two different matrices. We have
examined the base cases of right- and left-branching trees of two pitch events
with equal maximum time span of their heads. Multiplying two trees of this kind
which have the same branching results in a copy of the left multiplicand when
the duration of its first pitch event is less than or equal to the duration of the
first pitch event in the other tree, and in other cases by either a copy of the right
multiplicand or an invalid matrix which mixes elements from the two matrices,
depending on the relation of the durations to each other and to the time-span
of the head. Multiplying matrices with different branching produces an invalid
matrix with non-zero values in all elements. A possible musical interpretation
is that the resultant matrices indicate a distribution of possible trees resulting
from the combination of the two multiplicands, but we have yet to investigate
this in detail.

5 Conclusion

In this paper, we proposed a linear algebraic representation for the tree structure
of music. The significance of this work is two-fold.

First, we have shown that the matrix uniquely fixes the configuration of
the tree. Thus far, time-span trees and prolongation trees in GTTM include
an ambiguity at conjunction heights of branches. We have revised the issue by
the notion of maximum time-span (MTS), and assumed that each branch has a
height relative to a virtual vertical axis in accordance with its MTS. We placed
the branch height/difference as elements of the matrix, and thus, trees have come
under the mathematical domain, subject to algebraic operations.

Second, we proposed a matrix multiplication operation which resulted in the
reachability from each leaf pitch event to other pitch events. Rewriting those
elements by Boolean values, we have called it a topology matrix since it repre-
sents the connectivity in graph theory. When we multiplied it with a vector of
harmonic functions, we could arrive at a representation of which pitch event is
governed by which harmonic functions in the reduction. We have applied this
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representation in a tentative exploration of stability, hypothesizing that more
stable prolongational reductions have more typical harmonic progressions in the
sequence of harmonic functions which govern each pitch event. Further work is
required to more rigorously define what stability means and how it can be cal-
culated from a matrix and vector of harmonic functions. Prolongational trees
are intended to represent tension and relaxation in right and left branching, so
theories of harmony and tonal pitch space which also include notions of distance
from and to harmonies should be explored.

Future developments of our formalization are as follows, building on earlier
work concerning tree operations to determine the similarity of two pieces of
music and to generate new music by a tree-combination morphing process. The
algebraic operations on matrix representations, have the potential to lead to a
new methodology for arrangement and composition. For example, join and meet
of two trees are realized by addition of two matrices, where in the join operation
we should redefine aij + bij ≡ max (aij , bij) whereas in the meet operation we
do aij + bij ≡ min(aij , bij). In addition, if we would like to reverse the tree
chronologically, that is, each left/right-branching is reversed, we can represent
the resultant tree by the transposition of the original matrix. Furthermore, as
outlined above, we can consider the possibility of multiplication of two different
matrices, producing a new piece from the given two pieces.
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