
Declarative Priority In A Concur-
rent Logic Language ON

Keiji Hirata
NTT Communication Science Laboratories
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan
hirata@brl.ntt.co.jp

Kenichi Yamazaki
NTT Network Innovation Laboratories
3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan
yamazaki@t.onlab.ntt.co.jp

Abstract

It is well known that priority control is essential for real-world problems,
and indeed, many real-world-oriented concurrent logic/constraint languages,
such as KL1 and Oz, can deal with priority in explicit or implicit ways.
However, the design policies of these languages in terms of priority were
ad hoc, since priority has been considered non-logical. It turns out that
its procedural meaning has been given in an informal way at most. Our
aim is to construct a formal declarative semantics of a prioritized program
in order to increase the applicability of concurrent logic languages to real-
world problems. In this paper, we first define a model of priority and prove
some properties of the model. Then, we design a concurrent logic language
called ON based on our theoretical framework and discuss some prominent
characteristics that are embodied in sample programs written in ON. The
results presented in the paper provide a new insight into priority from the
declarative point of view.

1 Introduction

The goals of logic programming include giving a clear-cut boundary between
“what to do” and “how to do it”. According to Kowalski’s famous article
[7], what-to-do corresponds to the logic component, and how-to-do-it to the
control component. Declarative programming is the concept that a pro-
grammer concentrates on what-to-do and leaves how-to-do-it to a language
processing system as much as possible. Concurrent logic programming
languages (CLLs) have been developed according to this concept. Because
of the what-to-do concept, CLLs have excellent programmability, and hence
many of them have been successfully used for various reactive, parallel and
distributed applications.
On the other hand, certain application fields still require a programmer to

describe how-to-do-it. There are some cases where the how-to-do-it descrip-
tion contributes to speedup, and others where it is absolutely necessary in
order to ensure execution control proceeds exactly as a programmer intends.
In particular, for real-world concurrent processing, specifying how-to-do-it is

inevitable and essential; typical and familiar examples are interrupt process-
ing, exception handling, speculative computation, and real-time processing.
The standard way to control processes according to the programmer’s in-
tention is to give a priority to each process. The concept of priority is by
nature incompatible with CLLs because of their fundamental design policy,
i.e. specifying what-to-do as much as possible. Therefore, it is in general
considered difficult to incorporate priority into the framework of CLLs.
The authors think that in order to extend the applicability of CLLs to

real-world problems, priority should be incorporated into their framework.
There are three approaches to doing this:
(1) Incorporate a meta-level programming feature. In this approach, we can
prioritize all object-level activities but not meta-level ones, because priority
can be handled as a first-class data only from a meta-level interpreter.
(2) Provide built-in predicates and/or system libraries dedicated to prior-
ity handling. Huntback proposed a predicate for interrupt processing that
checks message arrival [6]. Gregory proposed a predicate for speculative
computation that checks whether a processor is idle [3]. Since such predi-
cates are ad hoc and inconsistent from the execution-model point of view, it
is difficult to understand priority in a declarative way.
(3) Reform a language so that it has a priority annotation but retains its
core semantics intact. Suppose that we have two versions of a program, a
prioritized one P and a non-prioritized plain one O. Let AO be the set of
all possible answers of program O and AP that of program P . Then, we
have AP ⊆ AO. Since priority just shrinks the set of answers, a priority
annotation is in general regarded as logically transparent. The attempts
with this approach are KL1 [11] and the work of Huntback [5]. However, in
these languages, the operational semantics in terms of priority is not defined
formally; priority is treated just as an implementation-dependent feature to
the extent that scheduling is carried out on the best-effort basis.
These classification suggests us a new approach which we adopt in this

paper; our standpoint is that (a) priority should be first-class data, (b)
priority should be declaratively understood, and (c) priority should have an
operational and model-theoretic semantics; a similar statement in CSP is
found in [2]. From these points of view, we design a new language that
amalgamates priority and the framework of CLLs so that we can give a
formal semantics to priority.
This paper is organized as follows. Section 2 defines a model of priority

and proves some crucial properties of the model. Section 3 designs a concur-
rent logic language called ON based on our framework; priority is introduced
as a first-class data to control process invocation and message passing. Then,
the operational semantics of ON is stated. Section 4 demonstrates sample
programs written in ON, including prioritized merge and prioritized event
loop, and discusses some prominent characteristics that are embodied in
these programs. Section 5 concludes the paper and addresses future work.

2 Formalizing Priority

This section first informally describes our design principle of a new data
type and its meaning for priority, formally defines it, and proves some useful
properties.

2.1 What Priority Should Be

Priority controls concurrent activities, such as process invocation and mes-
sage passing, to make nondeterministic execution more or fully deterministic.
The relations among priorities directly and indirectly reflect the execution
order of concurrent activities. Conventional priority systems use an integer
to represent priority in general. We think that this integer-based priority
involves serious problems.
First, we believe a priority relation should be binary and relative. Let us

consider the situation where a programmer decides the priority of each pro-
cess and cannot statically predict what and how many concurrent activities
are dynamically spawned. The programmer can decide that a concurrent
activity should be executed prior to the other, but he/she can not make a
total ordering among several or more concurrent activities. Hence, we think
that the binary and relative priority relation is intuitively understandable;
it allows us to read and write prioritized programs with relative ease. On
the other hand, the integer-based priority relations are total and absolute.
Next, we maintain that the priority relations needed for execution con-

trol are as follows: (1) equal, (2) higher or lower, and (3) unrelated. There
may be no need to explain (2). Equal means that the same-priority process
should be scheduled fairly. Unrelated is further split into two cases: (3a) a
programmer does not care about the order of two concurrent activities and
(3b) he/she cannot make the order even if he/she is required to. Either
way, it is impossible to express this intention using integer-based priority.
In a sequential environment, both the “equal” relation and the “unrelated”
relation may lead to (fairly) nondeterministic execution. However, in a par-
allel and/or distributed environment, these two relations may yield different
behaviors and effects. As for (3b), let us consider a distributed environment.
When a programmer wants to execute a activity A at a remote processor,
he/she must know the priorities of all the activities that already exist at the
remote processor in order to prioritize A. We think this is unrealistic, and
therefore relations (1) and (3) should be distinguished.
Note that for instance, the equal-or-higher relation is meaningless, be-

cause there is no distinction between the behavior of this relation and that
of the equal relation.
Finally, we believe a priority relation should be stable. To treat priority

declaratively, once a priority relation is fixed, it should never change. This
implies that an unrelated relation should remain unrelated. Suppose that
there are two unrelated priorities A and B, and a process with A is executed
earlier than one with B by chance. If a new priority relation, say, B > A
is defined after the execution of the second process (one with B), the actual
execution order (A then B) contradicts the defined priority relation B > A.
We think that such a situation should not happen.

From our first claim, we base our priority system on a binary, relative
relation, denoted as ‘Â’. From the second, to create an equal priority, we
explicitly use ‘=’. As long as two priorities are not explicitly related to each
other using Â and/or =, they are unrelated. From the third, we slightly
extend the Â relation and introduce a language constructor for priority def-
inition of the form (H1, H2, · · ·) Â P Â (L1, L2, · · ·) to create a priority P .
The form used is as follows. Here we introduce special symbols > and ⊥,
which mean the top and bottom priorities respectively. Then, if for a given
priority Q we create a new priority P higher or lower than Q (satisfying
P Â Q or Q Â P), we write > Â P Â Q or Q Â P Â ⊥. If for two given
priorities P and Q (suppose P Â Q) we create a new in-between priority
R satisfying P Â R ∧ R Â Q, we just write P Â R Â Q. If we create
two unrelated priorities P , Q, we write > Â P Â ⊥ ∧ > Â Q Â ⊥. It is
advantageous that the condition for stability can be simply stated with the
form (H1, · · · , Hn) Â P Â (L1, · · · , Lm). That is, this form requires that
the condition ∀i∀jHi Â Lj holds before a new priority P is put between Hi

and Lj . At the same time, this form guarantees that the condition holds
after the new priority is created.

2.2 Term Model for Priority

Let us elaborate on what information a priority has to keep as a term. The
form of a priority definition implies a priority P can be regarded as the
function of Hi and Lj . We also have to distinguish A and B created by
> Â A Â ⊥∧> Â B Â ⊥. Therefore, a priority should have the information
of an identification, higher priorities Hi, and lower priorities Li.

C is the set of all constant symbols. Var is the set of all variable names.
Var(t) is the set of variables occurring in a term t and is defined as usual.
An atomic formula is of the form A ? B, where A and B are variables,

> (the top symbol), or ⊥ (the bottom symbol), and ? is either Â or =.
A formula is constructed from atomic formulas and connectives, ∧,∨, and
¬ as usual. A structure consists of a domain and an interpretation. A
valuation into a structure is a total function from variables to the domain of
the structure.

Definition A priority definition is of the form (H1, · · · , Hn) Â P Â (L1, · · · , Lm),
where P is a variable, and Hi (i = 1..n) and Lj (j = 1..m) are variables, >,
or ⊥.

Definition Let C be the set of all constants. Then T is a priority type
C×2C×2C, and an instance t ∈ T is represented as a triplet 〈a, {b1, · · · , bn},
{c1, · · · , cm}〉, where a, b1, · · · , bn, c1, · · · , cm are all constants. Here a works
as an identifier of a priority.
If t ∈ T is 〈e1, e2, e3〉, we introduce a dotted notation t.i to access a

component ei (i = 1, 2 or 3). We use T as the set of all instances of type T .

Definition Π is {>,⊥} ∪ T . There are two kinds of binary relations on
Π, denoted as Â and =, and these are subsets of Π × Π, respectively. The
rules prescribing these relations and special constants are as follows: for

α, β, γ, ξ ∈ Π, (R1) α Â ξ if α.1 ∈ ξ.2, (R2) ξ Â β if β.1 ∈ ξ.3, (R3)
α Â β∧β Â γ → α Â γ, and (R4) α = β if α.i = β.i (i = 1, 2 and 3); > = >
and ⊥ = ⊥, (R5) ∀α ∈ Π.> Â α ∨ > = α, (R6) ∀α ∈ Π.α Â ⊥ ∨ ⊥ = α.
Since we intend to build a term model for priority, we adopt Π as a semantic
domain and call it a priority domain. The relations and the symbols defined
by rules (R1)∼(R6) are also straightforwardly mapped to the correspondings
on the priority domain Π. Although strictly speaking, we should write >Π,
⊥Π ÂΠ and =Π on Π, we will use >, ⊥, Â and = instead as long as there is
no confusion.
It follows from the above definition that > Â ⊥ holds.

Definition P is a priority structure consisting of the priority domain Π
and the canonical interpretation.

Definition The realizability of a set of formulas is defined in the standard
way [9]. A valuation Γ realizes a formula φ in the priority structure P and
we write P,Γ |= φ, if for {V1, · · · , Vn} = Var(φ),P |= φ[Γ(V1), · · · ,Γ(Vn)],
where φ[α1, · · · , αn] means that α1, · · · , αn(∈ Π) are respectively put as the
values of free variables V1, · · · , Vn in φ.
A valuation is also represented in a set of pairs of a variable and a value:

Γ = {〈X1, ξ1〉, 〈X2, ξ2〉, · · ·}.

Definition Let D be a finite set of priority definitions. We now present an
algorithm to compute a valuation of D into the priority structure P, denoted
as Γ.
(S1) D1 = D and Γ1 = {}.
(S2) Suppose that we have Dk and Γk. Choose d ∈ Dk such that d =
(H1, · · · , Hn) Â P Â (L1, · · · , Lm) and ∀i∀j.P |= Γk(Hi) Â Γk(Lj). Then,
we create a new element ξ(∈ Π), which is 〈“P”,{Γk(H1).1, · · · ,Γk(Hn).1},
{Γk(L1).1, · · · ,Γk(Lm).1}〉, where “P” is a fresh constant generated from the
variable name of P . Γk+1 = {〈P, ξ〉}∪Γk and Dk+1 = Dk \ {d}. Iterate Step
(S2), while Dk 6= ∅.
(S3) If Dk = ∅, Γ = Γk ∪ {〈X, ζ〉, · · ·}, where X’s are Var \ Var(D) and ζ’s
are arbitrary elements in Π.
If this computation meets the following two cases at Step (2), it termi-

nates halfway; Γ is not generated. One is that there is no d found in Dk

satisfying ∀i∀j.P |= Γk(Hi) Â Γk(Lj). The other is that for a variable P ,
〈P, ξ〉 is added more than once. At Step (S3), adding set {〈X, ζ〉, · · ·} makes
Γk a total function. Since D is finite, Dk = ∅ is reached eventually, and the
algorithm always terminates.
The algorithm for computing the valuation presented above is nondeter-

ministic. This is because there are several choices for a priority definition
d ∈ Dk to create a new element ξ. Thus, the more than one valuation of
D may be computed with different sequences of d. However, the following
proposition states that the valuations are unique.

Definition A finite set of priority definitionsD is well-formed if there exists
a sequence of d chosen at Step (S2) so that we successfully reach Dk = ∅
and obtain an answer valuation Γ.

Proposition 2.1 (Declarative Priority)
Let D be a finite well-formed set of priority definitions. Then, the compu-
tation by the above algorithm always reaches the identical answer valuation
independently from the selection sequences of d ∈ D.

Outline of proof. It is obvious that all valuations, if they exist, are identical,

because ξ is always uniquely determined at Step (S2). It hence suffices to show that

the algorithm can always choose a priority definition at every Step (S2) and finally

moves to Step (S3). Since D is well formed, there exists a selection sequence of
priority definitions, denoted by S1. We use proof by contradiction. Suppose that at

some step (S2), the algorithm can not choose proper d, and let χ be the set of the

priority definitions already selected until the step. Here we consider the sequence

of priority definitions by deleting χ from the sequence S1, denoted by S
′
1. Note

that the left most priority definition of S ′
1 can be chosen at Step (S2). Thus, if

the algorithm selects the left most one of S ′
1 as d, it can generate a new ξ. Hence

contradiction. Since D is finite, the algorithm always reaches Dk = ∅. 2

Definition Let D be a finite well-formed set of priority definitions and
Γ the valuation of D into the priority structure P computed by the above
algorithm. Then, the term model of D and rules (R1)∼(R6) consists of
priority domain Π, the canonical interpretation, and Γ (namely P and Γ).

Example 2.2 Suppose that the set of priority definitions D is {> Â A Â
⊥,> Â B Â ⊥, (A,B) Â C Â ⊥, C Â D Â ⊥}. Then, we obtain the valua-
tion Γ = { 〈A, 〈“A”, {>}, {⊥}〉〉, 〈B, 〈“B”, {>}, {⊥}〉〉, 〈C, 〈“C”, {“A”, “B”},
{⊥}〉〉, 〈D, 〈“D”, {“C”}, {⊥}〉〉 } ∪ {〈X, ζ〉, · · ·}, where “A”, “B”, “C” and
“D” are distinct constants, X’s are Var \ Var(D) and ζ’s are arbitrary ele-
ments in Π.

The following graph depicts the priority relations of D; the righthand side
shows all the priority relations deduced from D.

⊥

>

Γ(A)
Γ(B)

Γ(C)

Γ(D)
A
A
AA

¡
¡

¢
¢
¢
¢¢

HH

AA````̀

½
½
½½
HH

ÃÃÃÃÃ

> Â Γ(A), Γ(A) Â ⊥, Γ(A) Â Γ(C),
> Â Γ(B), Γ(B) Â ⊥, Γ(B) Â Γ(C),
> Â Γ(C), Γ(C) Â ⊥, Γ(C) Â Γ(D),
> Â Γ(D), Γ(D) Â ⊥, Γ(A) Â Γ(D),

Γ(B) Â Γ(D)

2.3 Properties

Definition Let P be the priority structure. For a formula φ, let φP denote
the set of all valuations {Γ | P,Γ |= φ}. Then, for formulas ψ and φ, we say
that ψ entails φ and write ψ |= φ if ψP ⊆ φP .
The new element ξ computed at Step (S2) of the above algorithm, if it

exists, always satisfies the relation Γk(H1) Â ξ ∧ · · · ∧ Γk(Hn) Â ξ ∧ ξ Â
Γk(L1) ∧ · · · ∧ ξ Â Γk(Lm) because of rules (R1) and (R2) in Section 2.2,
and this relation does not violate the existing priority relations. This implies
that a priority definition (H1, · · · , Hn) Â P Â (L1, · · · , Lm) can be logically
regarded as H1 Â P ∧ · · · ∧Hn Â P ∧P Â L1 ∧ · · · ∧P Â Lm. Therefore, we

can write P,Γ |= D, D |= A Â B if D entails A Â B, and D |= ¬(A Â B) if
it does not. Similarly, D |= A = B if P,Γ |= A = B. Also, D |= A 6∼ B is a
notational convenience for D |= ¬(A Â B ∨B Â A ∨A = B).

Lemma 2.3 Let D be a well-formed set of priority definitions, and let V
be {>,⊥} ∪ Var(D). Then, for A,B ∈ V,D |= ¬(A Â B ∧ B Â A) and
D |= ¬(A Â A).

Outline of proof. Induction on the construction of a valuation and proof by

contradiction are used. 2

The lemma shows that our priority is transitive but neither antisymmet-
ric nor reflexive. This property corresponds to that of the ‘<’ predicate of
the Tempo language [4].

Proposition 2.4 (Satisfaction Completeness of Priority Relations)
Let D be a well-formed set of priority definitions, and let V be {>,⊥} ∪
Var(D). Then, for A,B ∈ V,D |= (A Â B ∨B Â A ∨A = B ∨A 6∼ B), and
these cases are mutually execution.

Outline of proof. In the case of Γ(A) = Γ(B), the proof is straightforward.

Otherwise, it follows from Lemma 2.3. 2

Thus, a well-formed set of priority definitions is consistent.

Proposition 2.5 (Stability of Priority Relations)
Let D and D′ be finite well-formed sets of priority definitions satisfying D ⊆
D′, and let V be {>,⊥} ∪ Var(D). Then, for A,B ∈ V,D |= A ? B ⇒ D′ |=
A ? B, where ? is either Â, = or 6∼.

Outline of proof. Since D ⊆ D′, new priority definitions are just added to D
and we get D′. Consider the following cases: (i) D |= A Â B is transformed to

D′ |= (A Â B ∧ A ¦ B), (ii) D |= A = B to D′ |= (A = B ∧ A Â B), and (iii)

D |= A 6∼ B to D′ |= A¦B, where ¦ is either Â or =. It is proved by Proposition 2.4
that cases (i) and (ii) do not occur. It follows from the construction of a valuation

Γ that case (iii) does not occur. 2

2.4 Aggregate Priority

Definition Let D be a well-formed set of priority definitions, and { ~A} and

{ ~B} nonempty sets of priority variables. First, we define a partial ordering

between these sets: D |= { ~A} º { ~B} if (∀X ∈ { ~A}∃Y ∈ { ~B}.D |= X Â

Y ∨ X = Y) ∧ (∀Y ∈ { ~B}∃X ∈ { ~A}.D |= X Â Y ∨ X = Y). Then,

D |= { ~A} = { ~B} if D |= { ~A} º { ~B} ∧ { ~B} º { ~A}, and D |= { ~A} Â { ~B}

if D |= { ~A} º { ~B} ∧ { ~A} 6= { ~B}. Also, D |= { ~A} 6∼ { ~B} is a notational

convenience for D |= ¬({ ~A} Â { ~B} ∨ { ~B} Â { ~A} ∨ { ~A} = { ~B}).
The relations Â, = and 6∼ between two aggregate priorities have the

same properties as those between two priorities; that is, Â for { ~A} Â { ~B} is
transitive but neither antisymmetric nor reflexive. Lemma 2.3 and Proposi-
tions 2.4 and 2.5 can be easily extended for aggregate priority.
For example, let D be a finite well-formed set of priority definitions, and

suppose D |= A Â B. Then D |= {A} Â {A,B} ∧ {A,B} Â {B} holds.
The aggregate priority is used for defining an operational semantics of a

new language in Section 3.3.

3 New Language

The ON language is a concurrent logic language that is integrated with pri-
ority, the semantics of which is based on the framework given in Section 2.

3.1 Syntax

The syntax of ON is based on FGHC [11] (Fig. 1).

Program ::= :- Calls. Defs.

Calls ::= Calls, Calls | true | Unif | Pred | PDef
Defs ::= Defs. Defs | Pred :- Guard | Calls.

Guard ::= Guard, Guard | true | Unif
Unif ::= Var

PVar
= Term · · · priority-annotated unification

Pred ::= p(Arg,· · ·,Arg)PVar · · · priority-annotated predicate
PDef ::= (Prios) Â PVar Â (Prios) · · · priority definition

Prios ::= Prios, Prios | > | ⊥ | PVar
Arg ::= Atom | Var | PVar

Term ::= Atom | Var | f(Arg,· · ·,Arg)

Figure 1: Syntax

Here, p in Pred represents a predicate name, and f in Term a function
name. The structures of a predicate and a function are flat. Atom, Var and
PVar respectively represent an atom, a logic variable, a priority variable. The
domain of a logic variable is the Herbrand universe, and that of a priority
variable is Π introduced in Section 2.2. As a convention in this paper, we
will use P,Q,R,H,L to range over PVar. Here, we impose the following

syntactical constraint: for every definition clause p(V1, · · · , Vn)
P :- Vi1

Q1
=

t1, · · · , Vil

Ql= tl | Calls, variables V1, · · · , Vn,Var(t1), · · · ,Var(tl), P,Q1, · · · , Ql

are distinct. This syntactical constraint enables us to explicitly add a priority
annotation to every predicate call and every active/passive unification.
There are two kinds of concurrent activities in CLLs, process invocation

and message passing. Prioritizing goal reduction and active unification in
ON corresponds to controlling process invocation and message passing, re-

spectively. The intention of a priority-annotated active unification X
P
= t is

to send a message with a priority P added, while that of a priority-annotated

passive unification X
P
= t is to receive a message t and its associated priority

P . The intention of a priority-annotated predicate call p(V1, · · · , Vn)
P is to

call a process with a priority P . If a callee is a definition clause p(V1, · · · , Vn)
P

:- Vi1

Q1
= t1, · · · , Vil

Ql= tl | Calls, the priority that is associated with the call
is represented as the aggregate priority {P,Q1, · · · , Ql}. Note that since
P,Q1, · · · , Ql are all elements of the set, the priority of a process invocation
and that of message passing are treated equally.

3.2 Priority of Passive Unification

Definition Φ(G) is the set of priority variables occurring in Guard G;

Φ(G) = {Q1, · · · , Ql} if G is the Guard part of a definition clause, V1
Q1
=

t1, · · · , Vl
Ql= tl.

We consider the priorities to which Φ(G) are instantiated. Now we have

the following two types of passive unifications in ON: X
P
= f(Y1, · · ·) and

X
P
= Y . As for the former, it is usually expected that a corresponding

active unification X
Q
= f(Z1, · · ·) has been or will be executed elsewhere

in a program. Hence, we also have to care about the implicit unifications
Y1 = Z1, · · · that are subsequently spawned.
For simplicity, in this paper, we suppose that a program is well-moded

[12]. This guarantees that there is at most one writer for every variable.
Then, it suffices that the following three patterns are taken into account: (i)

P for a passive unification X
P
= t, (ii) P for a passive unification X

P
= Y

and (iii) Pi for an implicit active unification Yi
Pi= Zi when we have an active

unification X
Q
= f(· · · , Zi, · · ·) and a passive unification X

P
= f(· · · , Yi, · · ·).

Here, let t be a Term and D a set of priority definitions.
For (i), suppose that the chain of active unifications which instantiates

a variable X is of the form X
P1= X1, X1

P2= X2, · · · , Xn−1
Pn= t. Then, P for a

passive unification X
P
= t is bound to the minimum value among the values

of P1, P2, · · · , Pn, denoted as P1 ↓ · · · ↓ Pn. Operator ↓ is defined as follows:

Pi ↓ Pj =

{

Pj · · · D |= Pi = Pj or D |= Pi Â Pj

Q defined by (Pi, Pj) Â Q Â ⊥ · · · otherwise.

Operator ↓ is commutative and associative. This rule means that the lowest
priority on a chain determines the whole priority.
For (ii), suppose that the priority variables of all active unifications which

contribute to the bindings of X and/or Y are P1, · · · , Pn. Then, P for a

passive unification X
P
= Y is P1 ↓ · · · ↓ Pn. For example, when (a) there are

active unifications X
P1= Z,Z

P2= Y , (b) X
P1= t, Y

P2= t, and (c) X
P1= Y, Y

P2= t,

P for a passive unification X
P
= Y is P1 ↓ P2 in each case.

For (iii), suppose that an implicit active unification subsequently spawned

is Yi
Pi= Zi for every i. Then, Pi is instantiated to >. This rule means that

whatever priority is set to the active unification at the top level, it does not
affect the priorities of the argument-level implicit unifications.

3.3 Operational Semantics

Section 2.3 defines the entailment of formulas, denoted as |=. On the other
hand, for conventional logical formulas F and G, we also write F |= G if G
is a logical consequence of F [8]. So, we will properly use |= in these two
meanings.

Definition A configuration is a triplet 〈C,S〉:V in which C stands for
Callsand S stands for a constraint store, which is a set of active unifica-

tions Unif and priority definitions PDef. V is the set of variables contained
in S. An initial configuration is 〈C0, ∅〉:∅, where C0 stands for an initial goal.
Note that priority is carried into a constraint store with an active unification.
This suggests that our framework for prioritizing concurrent activities is an
extension of the conventional concurrent constraint (cc) framework [9].

Definition Let C be a set of goals and S a constraint store. For a goal

b ∈ C, a function πS : b → 2{>,⊥}∪PVar calculates the aggregate priority
associated with the goal reduction of b, where b is either Unif, Pred or PDef.
Then, b is executable in S if πS(b) 6= ∅. πS(b) is computed as follows:

(Unif) b is an active unification X
P
= t: πS(b) = {P} if S |= > Â P . Other-

wise, πS(b) = ∅.
(Pred) b is a predicate call p(V1, · · · , Vn)

P : For every p(W1, · · · ,Wn)
Q :- G |B ∈

Defs, πS(b) = {P}∪Φ(G) if S |= > Â P and S |= ∃∆G{V1/W1, · · · , Vn/Wn},
where ∆ = Var(G{V1/W1, · · · , Vn/Wn}). Otherwise, πS(b) = ∅.
(PDef) b is a priority definition (H1, · · · , Hn) Â P Â (L1, · · · , Lm): πS(b) =
{>} if ∀i∀j.S |= Hi Â Lj . Otherwise, πS(b) = ∅.
In case (Pred), it suffices that we just check the entailment of the logical

formula G and ignore all priority variables Φ(G). This is guaranteed by
the Active Unification rule presented below; that is, for a passive unification

X
Q
= t, that Q is instantiated is equivalent to that X is instantiated.

Definition Let C be a set of goals and S a constraint store. Then, a goal
m ∈ C has themaximum priority in S ifm ∈ E = {e | e ∈ C is executable in S}
and ∀b ∈ E \ {m}.S |= πS(m) Â πS(b) ∨ πS(m) 6∼ πS(b).
In general, there are more than one goal that have the maximum priority

in S.
Program execution is represented by successive configurations C0, C1, C2, · · ·.

A transition is a binary relation on configurations,→⊆ C×C; the transition
Cj → Cj+1 is defined by the transition rules presented in the Plotkin style
in Fig. 2. A transition is made in one step and is thus atomic. In the figure,
~X and ~Y mean variable sequences of the same length.

Predicate Call

〈{p(~X)P },S〉:V → 〈Bθ,Gθ ∪ S〉:V ∪ V(G,B) if p(~X)P is executable in S, the cor-

responding clause is p(~Y)Q :- G | B,

θ = {P/Q, ~X/~Y }, and V ∩ V(G,B) =
∅.

Active Unification

〈{X
P
= t},S〉:V → 〈∅, {X

P
= t} ∪ S〉:V if X

P
= t is executable in S.

Priority Definition
〈{(H1, · · · , Hn) Â P Â (L1, · · · , Lm)},S〉:V →
〈∅, {(H1, · · · , Hn) Â P Â (L1, · · · , Lm)} ∪ S〉:V

if (H1, · · · , Hn) Â P Â (L1, · · · , Lm)
is executable in S.

Goal Selection
〈{b},S〉:V → 〈C′,S ′〉:V ′

〈{b} ∪ C,S〉:V → 〈C′ ∪ C,S ′〉:V ′ if b has the maximum priority in S.

Figure 2: Transition Rules

It follows from the Priority Definition rule that the priority definition
is executed immediately after commitment, since its aggregate priority is
always {>}. There are illegal programs in that C 6= ∅ but no if condition in
every rule in Fig. 2 is satisfied; thus, the execution is suspended perpetually.

4 Programming with Priority

This section demonstrates programming with priority in ON. Basically, there
are two methods in CLLs to react to an asynchronous message from an
external process: event loop and merge. Thus, we take them as sample
programs in the following subsections. After that, it is shown that ON has an
independency property in terms of the priority control of process invocation
and message passing. We think that this property plays an important role
in the process-message paradigm.

4.1 Prioritized Event Loop

Fig. 3 is a sample program that demonstrates prioritizing clause selection in
ON. The loop/2 predicate usually makes a recursive call while waiting for
an express message from interrupt/1 which is executed at a higher prior-
ity. When a message from interrupt/1 arrives at loop/2, both the definition

:- > Â P Â ⊥,> Â Q Â P ,
interrupt(Sig)Q,

loop(Sig,D)P , D
P
= init.

interrupt(Sig)Q :- exception(Ex) |

Sig
Q
= [Ex|T],

interrupt(T)Q.

loop(Sig,D)P :- Sig
Q
= [Ex|T] |

handler(Ex)Q,
loop(T,D)P .

loop(Sig,D)P :- true |
body(D,E)P ,
loop(Sig,E)P .

Figure 3: Prioritized Event Loop

clauses of loop/2 become the candidates for commitment. Then, the aggre-
gate priority of the first clause is {Q,P}, while that of the second is {P}.
Since Q Â P , we have {Q,P} Â {P}. Thus, the first clause always precedes
the second; as soon as a message from interrupt/1 arrives, it is processed.

4.2 Prioritized Merge

Suppose that process merge/3 receives messages from process interrupt/1
with higher priority than ones from process routine/1. ON can implement
two methods to prioritize messages from interrupt/1: (1) controlling the
priorities set to messages and (2) controlling the priorities set to processes. In
method (1), the priority of each message is made equal to that of its sender,
and the process priorities are set as interrupt Â routine. Here the priority
of merge/3 does not matter. In method (2), the priority of every message
is made equal, and the process priorities are set as interrupt Â merge Â
routine. Method (1) can be implemented only in ON, while method (2) can
also be implemented in KL1. Fig. 4 shows the prioritized merge program
based on method (1).

:- > Â P Â ⊥,> Â Q Â P,
> Â R Â ⊥,
merge(Sig,D,Z)R,
interrupt(Sig)Q,
routine(D)P .

interrupt(Sig)Q :- the same as Fig. 3

routine(D)P :- true |
gen data(X)P ,

D
P
= [X|Ds],

routine(Ds)P .

merge(X,Y, Z)R :- X
Q
= [H|Xs] | Z

Q
= [H|Zs],merge(Xs, Y, Zs)R.

merge(X,Y, Z)R :- Y
P
= [H|Y s] | Z

P
= [H|Zs],merge(X,Y s, Zs)R.

Figure 4: Prioritized Merge

4.3 Contradictory Prioritization in KL1

To explain the concept of the independency of controlling process invocation
and message passing, we show that KL1 does not have the independency
property.
In KL1, process priority is controlled by @priority, and clause selection

by alternatively. An integer is dynamically given to @priority as its
argument. Accordingly, the priority of KL1 has the total ordering. If both
the definition clauses above and below the alternatively pragma are ready
for commitment (that is, their variables are sufficiently instantiated), one of
the clauses on the upper side is always selected. As such, in KL1, the
process control by priority is dynamic, while the clause selection is static. In
other words, process priority is controlled by a message sender, while clause
selection is controlled by a message receiver. Unfortunately, the KL1 priority
system causes contradictory prioritization.
The following KL1 program is problematic.

:- (X = a)@priority(10), p(X,Y) :- X = a | true.
(Y = b)@priority(20), alternatively.
p(X,Y)@priority(Np). p(X,Y) :- Y = b | true.

In this program, suppose that Np, which is given as the priority of p(X,Y), is
instantiated to an integer somewhere else. Then, the commitment of p(X,Y)
depends on not only the position of alternatively but also on the value of
Np. If Np > 10, the second definition clause is selected; if Np = 10, the clause
selection is nondeterministic; if Np < 10, the first is selected. This behavior
is caused by the contradiction of the dynamic relation between priorities
of X = a and Y = b and the static relation between the first and second
clauses of p/2 posed by alternatively. It is also reported in [2] that such
contradictory prioritization may appear in Ada programming.
On the other hand, ON prevents a programmer from writing such a pro-

gram with contradictory prioritization, since the aggregate priority is em-
ployed for clause selection and all the priorities for process invocation and
message passing are dynamically given by message senders.

4.4 Independency of Priority Control

We show that process invocation is independent from the prioritization of
message passing in ON and vice versa. Let S be the constraint store after
the completion of program execution, through this subsection.

Program Feature 4.1 There are the following programs A and B. Which
process, p/2 or q/2, precedes the other is determined only by the ordering
between P and Q; it is independent from the message priority represented
by R.

:- > Â P Â ⊥,> Â R Â ⊥, P Â Q Â ⊥,

p(X,Y)P , q(X,Z)Q, X
R
= t.

p(X,Y)P :- X
R
= t | Y

P
= a.

q(X,Z)Q :- X
R
= t | Z

Q
= b.

Program A

:- > Â P Â ⊥,> Â R Â ⊥,

p(X,Y)P , q(X,Z)P , X
R
= t.

The definitions of p/2 and q/2
are the same as Program A.

Program B
Proof. In Program A, S |= P 6∼ R and S |= Q 6∼ R. We consider the fol-
lowing three cases in terms of the invocation order of p(X,Y)P , q(X,Z)Q,

and X
R
= t. (A1) The order p(X,Y)P , q(X,Z)Q and X

R
= t: First the invo-

cations of p(X,Y)P and q(X,Z)Q are suspended. When X
R
= t is executed,

both p(X,Y)P and q(X,Z)Q become executable. Since their aggregate pri-
orities are {P,R} and {Q,R} respectively and {P,R} Â {Q,R}, p(X,Y)P

precedes q(X,Z)Q. (A2) The order p(X,Y)P , X
R
= t and q(X,Z)Q: First

the invocation of p(X,Y)P is suspended. After X
R
= t is completed, the ex-

ecution of p(X,Y)P resumes. This is followed by q(X,Z)Q. (A3) The order

X
R
= t, p(X,Y)P and q(X,Z)Q: Since X

R
= t has been executed, p(X,Y)P

immediately becomes executable. Therefore, in every case, the commitment
of p(X,Y)P always precedes that of q(X,Z)Q.
Next, Program B behaves as the same FGHC program with the priority

annotations ignored, since the aggregate priorities are equal. Thus, whether
p/2 precedes q/2 or vice versa is nondeterministic. Consequently, the exe-
cution order of p/2 and q/2 is independent of R. 2

Program Feature 4.2 There are the following programs C and D. The
value of variable Z is determined only by the ordering of P and Q; it is
independent from the process priority represented by R.

:- > Â P Â ⊥,> Â R Â ⊥, P Â Q Â ⊥,

X
P
= a, Y

Q
= b, p(X,Y, Z)R.

p(X,Y, Z)R :- X
P
= a | Z

P
= a.

p(X,Y, Z)R :- Y
Q
= b | Z

Q
= b.

Program C

:- > Â P Â ⊥,> Â R Â ⊥,

X
P
= a, Y

P
= b, p(X,Y, Z)R.

The definition of p/3
is the same as Program C.

Program D
Proof. In Program C, S |= P 6∼ R and S |= Q 6∼ R. We consider the fol-

lowing three cases in terms of the invocation order of X
P
= a, Y

Q
= b and

p(X,Y, Z)R. (C1) The order X
P
= a, Y

Q
= b and p(X,Y, Z)R: The aggregate

priorities of the two definition clauses of p/3 are {P,R} and {Q,R}. Since
{P,R} Â {Q,R}, the first clause is always selected and Z = a is obtained.

(C2) The order X
P
= a, p(X,Y, Z)R and Y

Q
= b: Upon the invocation of

p(X,Y, Z)R, the first clause of p/3 is selected and Z = a is obtained. (C3)

The order p(X,Y, Z)R, X
P
= a and Y

Q
= b: The invocation of p(X,Y, Z)R first

suspends. After X
P
= a is completed, the execution of p(X,Y, Z)R resumes,

the first clause of p/3 is selected and Z = a is obtained. Therefore, in every
case, the first clause of p/3 is selected and we get Z = a.
Next, Program D behaves as the same FGHC program with the priority

annotations ignored, since the aggregate priorities are equal. Thus, which
clause of p/3 is selected, the first or the second, is nondeterministic. Conse-
quently, the clause selection of p/3 is independent of R. 2

A counterpart of a phenomenon known as priority inversion may occur
in ON programs. We think it is not appropriate to amalgamate into ON

a mechanism to resolve priority inversion such as the priority-inheritance
algorithm, since the design principle of ON is to give a means of describing
priority to a programmer. Actually, we successfully wrote a simple priority-
inheritance algorithm in ON.

5 Concluding Remarks

From the above development and the sample programs, we think that our
framework can make priority a means for representing a programmer’s in-
tention related to execution control in declarative programming. Moreover,
thinking about priority may give us another new insight into execution con-
trol and the process-message paradigm.
According to the operational semantics of ON, every time a goal is re-

duced, its language processing system must compute the aggregate priorities
of many goals and choose a goal with the maximum priority among them.
The operational semantics employs fine-grained concurrency, and it seems
quite inefficient if naively implemented. Thus, detecting specific patterns in
which the overhead of the goal selection and goal scheduling can be allevi-
ated will be inevitable. We expect that the static analysis of priority in a
program will be able to detect some profitable characteristics for program
execution. One is the condition that makes the computation of the goal se-
lection lightweight. Actually, we have already discovered some prioritization
patterns to be profitable. Another is the thread extraction and some other
information for goal scheduling. The analysis may suggest suspension-free
threads and as static goal-scheduling strategies as possible. This characteris-
tic benefits the coarse-grained concurrency employed by almost all practical
implementations of CCLs [1]. In addition, if the analysis detects unrelated
threads in terms of priority, each thread may be regarded as an execution
unit in a distributed environment.
There is also another interesting approach to share our basic motivation

for treating prioritized concurrent activities, in which an agent of the form
if a else A, representing default, is introduced to detect negative information
[10]. Since we think this approach is closely related to ours, a comparison
between them will be the subject of future investigations.
We are just at the first step, where the declarative semantics for priority is

given and a concurrent logic language with the concept of priority is designed.

As stated in Section 1, priority restricts the set of answers as AP ⊆ AO;
our research is motivated by the exploration of the semantics for priority.
Therefore, future work will be to identify AP and clarify how priority affects
the language semantics.

Acknowledgements: We would like to thank Prof. Kazunori Ueda for
his encouraging suggestions to the material of this paper. We thank the
anonymous ICLP’99 referees who carefully read and gave valuable comments,
although we unfortunately could not reflect all of them in this paper. We also
thank Mr. Yasuyuki Tsukada of NTT for the improvement of the theoretical
treatment of priority and the board members of the KLIC Association for
the discussion about practical use. Thanks are due to Dr. Shunichi Uchida,
the director of Research Institute For Advanced Information Technology
(AITEC), for his environmental support.

References

[1] Chikayama, T., KLIC: A Portable Parallel Implementation of a Con-
current Logic Programming Language, Proc. of Parallel Symbolic Lan-
guages and Systems (PSLS’95), also in LNCS 1068, 1995.

[2] Fidge, C. J., A Formal Definition of Priority in CSP, ACM Trans. on
Prog. Lang. and Sys., Vol.15, No.4, pp.681–705, Sep. 1993.

[3] Gregory, S., Experiments with Speculative Parallelism in Parlog, Proc.
of the 10th ISLP, 1993.

[4] Gregory, S., and Ramirez, R., Tempo: a declarative concurrent pro-
gramming language, Proc. of the 12th ICLP, 1995.

[5] Huntback, M., Speculative Computation and Priorities in Concurrent
Logic Languages, Proc. of the 3rd UK Conference on Logic Program-
ming (ALPUK’91), 1991.

[6] Huntback, M. and Ringwood, G., Programming in Concurrent Logic
Language, IEEE Software, pp.71–82, Nov. 1995.

[7] Kowalski, R., Algorithm = Logic + Control, Comm. ACM 22, 7,
pp.424–436, 1979.

[8] Lloyd, J. W., Foundations of Logic Programming, Second, Extended
Edition, Springer-Verlag, 1987.

[9] Saraswat, V. A., Concurrent Constraint Programming, The MIT Press,
1993.

[10] Saraswat, V., Jagadeesan, R. and Gupta, V., Timed Default Concurrent
Constraint Programming, J. of Symbolic Computation, Vol.22, Nos.
5&6, pp.475-520, 1996.

[11] Ueda, K. and Chikayama, T., Design of the Kernel Language for
the Parallel Inference Machine. The Computer Journal, Vol.33, No.6,
pp.494–500, 1990.

[12] Ueda, K. and Morita, M., Moded Flat GHC and Its Message-Oriented
Implementation Technique, New Generation Computing, Vol.13, No.1,
pp.3–43, 1994.

