Regular Paper

Music Server System
—Distributed Music System on Local Area Network—

TATsuYA Aovacr* and Keut HiRaTA**

This paper describes the system architecture and design consideration of a music server system. The music
server system is a platform for music applications under a distributed environment. It is designed by the server-
client model, and offers special functions dedicated to musical applications.

The music server system is implemented on a workstation and a personal computer connected via a local area
network. The system is made of several processes: a music server, a clock client, a device-driver client and ap-
plication clients. They cooperate using the inter-process communication with a special protocol.

Model of the music server consists of the following abstractions: event, track, and time map. An event is de-
fined as a pair of an action and time at which the action is issued. A track holds events, fires events punctually
and converts server time to track time according to the time map.

The network delay and the process switching overhead may not only increase the response time of the system
but also degrade the time accuracy. The algorithm basically incorporates deadline scheduling and event buffer-
ing for keeping the time accuracy high enough. We have evaluated the buffer delay and investigated the domi-

nant parameters.

1. Introduction

Nowadays, many computer music systems are
available {2, 5, 6, 9, 14, 15]. Almost all of those systems
are built on personal computers (such as IBM-PC and
Macintosh) with MIDI (Musical Instrument Digital In-
terface) [12]. Although these systems are intensively
used for commercial recordings, research, or hobbies,
we think that those systems have several serious prob-
lems. Two major ones are:

spoor computing capability and
*a low interface-level.

Indeed, many computer music applications (such as
sound synthesis, sound analysis, improvisation genera-
tion, and human-machine ensemble) require a large
amount of calculation. Thus, huge computing power is
necessary to realize these applications and personal com-
puters cannot provide such power. Moreover, many
computer music applications have an inherently concur-
rent nature. For instance, when you write a program for
a human-machine ensemble, it is natural to exploit con-
current processes to represent these musical activities:
listening, score tracking, beat prediction, performance
generation etc. Unfortunately, however, almost all
major personal computers are single-process machines.
Thus, the problem is the lack of both sufficient com-

*The University of Electro-Communications.
**Institute for New Generation Computer Technology.

Journal of Information Processing, Vol. 15, No. 1, 1992

puting power and a multi-process capability.

The second problem is the low interface-level. Many
computer music applications are built directly on
MIDI-driver routines (Fig. 1) {4, 8]. Consequently, the
highest common interface to musical instruments is the
MIDI protocol level (almost the same as a hardware
level). However, since the MIDI protocol level is too
low for musical applications, this causes problems with
flexibility and extensibility. For example, if we want to
use another musical interface, such as a digital audio in-
terface (DAI), it is difficult to integrate the interface for
a new device with current application programs. So, a
layer to abstract the sound of musical instruments and
to provide a higher-level interface to musical applica-
tions is indispensable (Fig. 2).

Our idea to solve the first problem (poor computing

AP

AP
AP

MIDI driver

AP : Application Program

MIDI : Musical Instrument
Digital Interface

Fig. 1 Directly on MIDI Interface.

AP
AP
AP higher
Interface
MIDI DAl
driver driver

DA : Digital Audio Interface

Fig. 2 High Interface Level.

capability) was to build a computer music system as a
functionally-distributed system, i.e. a connection of per-
sonal computers and larger computers (e.g. worksta-
tions, minicomputers, and supercomputers) via a net-
work. A workstation' has a large computing power and
multi-processing capability, but lacks a realtime-control
facility (in particular, UNIX-based computers suffer
from this). Moreover, there are few workstations with a
hardware interface to MIDI, a digital audio interface
and so forth. On the other hand, it is easy to control the
hardware interface of a personal computer in realtime.
Thus, we expect that the combination of a personal com-
puter and a workstation can satisfy the above re-
quirements.

This distributed approach has the additional advan-
tages of high availability and high extensibility.
Workstations and personal computers connected via
networks are very popular and easy to establish. This
means that our approach requires no special hardware.
So, any one can easily build our system, and use it as a
platform for computer music research. Further, a
distributed system can bring us high extensibility. That
is, if a faster computer becomes available on a network
somewhere else, it would be easy to incorporate it into
our system via the network.

To cope with the second problem (a low interface-
level), the server-client model is adopted. This model is
suitable for distributed environments. Of course, the
server-client model does not answer the second prob-
lem. Here, the important point is to define a clear inter-
face between the server and clients. The server-client
model encourages us to design a higher level interface in-
dependent of hardware.

The main purposes of our research [10] are:

sto define appropriate interfaces between music
servers and clients, and

*to develop a mechanism which guarantees realtime
property on a hybrid system of workstations and per-
sonal computers.

This paper presents the design and implementation of a

'We use workstation to mean any large computer.

T. Aoyaci and K. HIRATA

Fig. 3 Global Configuration.

distributed music server system; we call it the Music
Server system. The structure of this paper is as follows.
Section 2 describes the external interface of Music
Server, and section 3 gives the internal design of Music
Server. These two sections concern the research pur-
poses listed above. A prototype of the Music Server
system and its sample sessions are presented in section
4. Section § discusses several design considerations, and
section 6 concludes this paper.

2. External View of Music Server

2.1 Global Configuration

Figure 3 shows the global configuration of our
distributed music system. The center of the system is
Music Server. It accepts requests from clients and pro-
vides services. At the lowest level, most requests cause
data transfers between Music Server and musical in-
struments. That is, Music Server sends/receives music
data to/from musical instruments with precise timing
as specified by the client’s request.

2.2 Abstractions

Since the data transfer level is too low to be controll-
ed directly by clients, Music Server has to provide an in-
terface to the client at a more abstract level. Therefore,
Music Server supports the following abstractions: an
event, a track, and a time map. An event is defined as a
pair of an action and the time at which that action is
issued. You may think of an event as abstraction of the
data transferred to/from musical instruments, such as
MIDI, DAI, SMPTE (Society of Motion Picture and
Television Engineers) time code. Since there are so
many evénts in our music system, a grouping
mechanism is indispensable. The track abstraction
plays this roll. A track holds events. Roughly speaking,
a track is analogous to one track of a multitrack tape or
one staff of a music score. Each track has its own clock.
On some tracks, time may proceed fast, while on others

Music Server System—Distributed Music System on Local Area Network—

track

track
clock

~

clock

time map

Fig. 4 Abstractions: Events, Tracks and Time maps.

it may not. So, the third abstraction, a time map, is
necessary [11]. A time map associates track time (virtual
time) with server time (real time). Each track has its
own time map, and its clock proceeds dependent on
that map. Music Server activates events on tracks ac-
cording to the track time. Figure 4 shows these abstrac-
tions.

2.2.1 Event

Basically, an event is a pair of an action and the time.
Figure 5 shows the properties of an event.

There are several kinds of actions specified by the
property action—type. Figure 6 shows the classification
of events depending on their action types.

A message event corresponds to a data transfer which
occurs between Music Server and musical instruments.
A MIDI event is a special message event in the case
where a musical instrument is a MIDI instrument.
When a MIDI event on a track is activated by Music
Server, MIDI data included in the event’s property, ac—
tion-arguments, is sent to MIDI. When data comes
from a MIDI interface to Music Server, a MIDI event is
stored on tracks.

A command event is executed inside Music Server.
All operations which Music Server accepts (see Section
2.3) can be realized as command events, as well. For in-
stance, command events can create a track, manipulate
the time map, or delete specified events.

2.2.2 Track

Figure 7 shows the properties of a track. A track
holds events (list-of-events), its own time map
(time-map), and the track time (track-time).

The play-flag and record-flag control data trans-
fer to and from the track. If the play-flag is on and

Event properties

* action-type

* action-arguments
* event-time

* retain-flag

Fig. 5 Event Properties.

MIDI event
DAl event
message event SMTPE event
event _{:
command event

Fig. 6 Event Classification.

Track properties

* list-of-events
* time-map

. lrlack;ltlme

* play-fla

* record-flag

* ownership

* notify-flag

Fig. 7 Track Properties.

message events on the track are activated, the data are
sent to the musical instrument. If the record-flagis on
and data come from the musical instruments, a message
event is put on the track. This implies that, if there are
many tracks with play—flags that are on, data transfer
from those tracks to the musical instruments may occur
at the same time. Also, if there are many tracks with
record—-flags that are on, incoming data are copied for
all the tracks.

Time map properties

* ofiset
* list-of-time-map-points

Fig. 8 Time Map Properties.

Request
opcode | size arguments
Reply
size arguments

Fig. 9 Message Format.

track
abstraction event
manipulation time map
request message event access
other request

Fig. 10 Message Categories.

2.2.3 Time Map

Each track has its own time map, which associates
the track time (virtual time) 7, with server time (real
time) 7,. The time map consists of a (strictly)
monotonically increasing function of time f(¢) and an
offset b. The relationship of these parameters is
represented by T,=f(7T,—b). The function must be
monotonically increasing. Since Music Server requires
the inverse of the function when calculating track time.

Figure 8 shows the properties of a Time Map. In the
current prototype, the function f is given as a sequence
of differential terms d7,/dT,. These terms represent the
reciprocal of the event-execution rate.

2.3 Protocol

A client requests a service to Music Server with inter-
process communication. We assume a reliable byte-
stream connection. Each request message forms a
packet as shown in Fig. 9. Some request may have a
reply message from Music Server. The request messages
which Music Server can accept are categorized as shown
in Fig. 10.

2.3.1 Abstraction Manipulation Request
Music Server provides the following functions:

«create/remove an abstraction (track, event, or time
map)
+get/put the value of a property of an abstraction.

T. Aovact and K. HIRATA

Create Track

Request Reply
opcode size size argument

Create track
© D

Track ——

Put Track Time

Request

opcode size arguments

Put Track| track track
Time D time

Fig. 11 Message Examples.

@ : type=A arg=2
@ : type=B arg=3

selected

/N

e oF Bol o 5 @ &

Toegin Tend track time

constraint

Tbegin ~ Tend
actiontype=8

action argument value = 2

Fig. 12 Event-access Method.

When Music Server creates an abstraction, Music
Server returns its identification number, which iden-
tifies the newly created abstraction, in a reply to the crea-
tion request. Client uses this identifier in subsequent re-
quest messages to manipulate the abstraction. Figure 11
shows examples of the messages.

2.3.2 Event-Access Request

Clients can access events using the identifier. It is
hard, however, for clients to manage every event with
its identifier, especially since the number of events is
quite large. Thus, Music Server provides an alternative
event-access method other than access by identifier; that
method uses the properties of events.

In this method, a client specifies constraints on each
property of an event. Music Server selects only the
events that simultaneously satisfy all constraints. Then,

Music Server System— Distributed Music System on Local Area Network—

Fig. 13 Process Configuration,

the selected events are obtained/deleted according to
the request message. The constraint consists of the
following components:

*Track-time Range (Tyegin ~ Tona)
«Action Type
*Action Arguments

The constraint of the track time is a time range. In
terms of the action type and the action arguments, their
constraints are examined by equality to the arguments
of the event-access request (i.e. exact match). Figure 12
shows an example of selection by the event-access re-
quest. For convenience, wildcards can be used, too.
However, there are some patterns which this method
cannot represent, such as events which does not satisfy
a constraint. Further investigation is needed on ex-
pressiveness and readability.

2.3.3 Other Requests
In addition to the request messages described above,
Music Server accepts the following requests:

*Session

Messages to open/close the connection to Music
Server.

*Global Information

Messages to get information on Music Server, e.g.
the message to get all the identifiers of available
tracks.

3. Inside Music Server

We will focus on how to realize realtime control in
the Music Server system.

3.1 Process Configuration

The Music Server system consists of a kernel process,
a clock process and a driver process (Fig. 13). Inter-
process communication occurs between the clock proc-
ess and the kernel process, and between the kernel proc-

5

ess and the driver process. This process configuration is
statically determined at system startup. There are
several types of messages transferred, such as request
and reply.

The clock process has a real clock driver. The clock
process is capable of issuing a special message (a
ticktack message) every Ip milliseconds, that will incre-
ment the clock in the kernel process.

The kernel process periodically receives ticktack
messages and increments its internal clock. Thus, the
kernel process can synchronize the clock process. Upon
reception of the ticktack message, the kernel process
computes the activation time of each musical event,
selects the events to be activated during the interval
(now ~ now+ I, milliseconds), and, then, transmits the
events to the driver process.

The driver process works as the interface to musical
instruments, connected externally. The driver process
periodically receives a bunch of events. Since events are
composed of an action and time as described earlier.
The driver process performs the action exactly at that
time, according to a clock within the driver process.
Moreover, the driver process can receive musical events
from the external musical instruments any time, too.
These events are stamped with the receiving time,
buffered, and sent together to the kernel process at ap-
propriate regular intervals.

If you want to realize a musical application, you
build a musical-application client, first. Then, the client
makes a connection to Music Server, that is, the kernel
process. The musical application exchanges various in-
formation with the kernel process to realize expected
functions.

3.2 Two-level Realtime Control

The Music Server system adopts functionally-
distributed approach as described in Chapter 1; the
realtime capability of a personal computer compensates
for the lack of a workstation. We can assume that the
clock process and the kernel process run on worksta-
tions, and the driver process runs on a personal com-
puter. To guarantee the realtime property of the whole
system, our system introduces two-level time resolution
management: coarse and fine grains.

The clock and kernel processes have a coarse grain
time resolution since the time resolution of the clocks in
those processes depends on the accuracy of a worksta-
tion’s timer routine and the process switching
overhead. If the interval of the ticktack messages is Ip
milliseconds, the tolerance of the interval is +15/2. On
the other hand, the driver process has fine grain time
resolution since its time resolution is determined by the
personal computer timer routine. As a result, the
system can achieve time resolution to the order of one
millisecond.

The driver process has two buffers for playing and
recording, a play-buffer and a record-buffer. When play-
ing musical events (output), first, the clock and kernel

6

processes on workstations perform the coase-grain
realtime control based on the deadline scheduling. Sec-
ond, the more accurate realtime control is done on a per-
sonal computer. Further, the driver process stores the
events using time window in the play-buffer to cancel
the latent fluctuation of the event-transmission path.
When recording musical events (input), the flow of
musical events is rather simple. First, the driver process
on a personal computer stamps them with the accurate
internal clock, and stores them in the record-buffer. Sec-
ond, these received events are transmitted to the kernel
process periodically at a coarse-grain interval.

3.2.1 Deadline Scheduling

The kernel process basically adopts the deadline
scheduling [1, 3, 13] to pick up the events to be ac-
tivated. Our deadline scheduling algorithm finds the
events with the earliest performance time. At that time,
the real time is converted to the virtual time through the
time map, and the algorithm works in virtual time. If
the time advances, there might be more than one event
which has to be performed within the duration. Since the
time resolution of the kernel process is too coarse, our
algorithm does not round up or down the performance
time of each selected event, but calculates the perfor-
mance time at the time resolution of fine grain even in
the kernel process. Next, the virtual performance time
is converted to the real time again, and those events are
sorted in chronological order. Accordingly, while our
algorithm obtains a bunch of the soonest events at the
time resolution of coarse grain, each event separately
has fine grain fine resolution performance. The driver
process performs these events at the finer resolution, of
course.

3.2.2 Buffering by Time Window

To absorb the deviations of network delay, process-
switching overhead, and the calculation time of the
kernel process, the driver process contains the play-
buffer that receives messages from the kernel process.
This buffer is managed by a time window (margin time):
constantly buffering the events for more than W
milliseconds from the actual moment (Fig. 14). That is,
an amount of messages to be buffered is determined not
by the number of the messages, but by the time window
to be buffered. For instance, if the time of the soonest
event is not in the time window, there are no events in
the buffer. However, if the activation time of more than
one event is within the time window, all of the events
are stored in the buffer. In other words, the clock of the
kernel process is advanced by the width of the time win-
dow of the driver process. Therefore, if the above devia-
tions fit in the time window, it is guaranteed that the
Music Server system works well. However, the buffer-
ing by the time window inevitably causes buffer delays.

3.3 Latency Analysis
This section examines the latency of the system.

T. AovAcr and K. HirRATA

T driver

B / T kernel

real time

Fig. 14 Buffering in Driver Process.

When playing, the latency is the interval between the
moment of posting a musical event to the kernel process
and the moment of performing the musical event by the
driver process. The sources of the latency are:

*the interval at which the ticktack messages are
regularly issued, Ip,

*the buffer delay of play-buffer, W,

enetwork propagation,

smessage composition/decomposition.

Without taking the third and the fourth factors into ac-
count, we can easily see that the minimal latency
vibrates between W and W+ Ip (Fig. 15), and the arrival
of a ticktack message can be deferred by W at most.
When recording, the latency means the interval be-
tween the moment an musical instrument is played and
the moment the kernel process receives the performance
data from the instrument. The record-buffer is flushed
every I milliseconds, and the flushed events are sent to
the kernel process together. The causes of latency are:

the interval at which the driver process regularly
transmits the recording data, Iz,

enetwork propagation,

*message composition/decomposition.

Also without taking the second and the third point into
account, we can easily see that the minimal latency
vibrates between 0 and I, similar to natural latency in

playing.
4. Prototype System And Sample Sessions

4.1 Prototype Configuration

Figure 16 shows the prototype configuration of the
Music Server system, which consists of a workstation
(SUN3/280) and a personal computer (NEC PC9801)
connected via a local area network (Ethernet). The per-

Music Server System—Distributed Music System on Local Area Network—

latency

e time

Ip

Fig. 15 Latency Vibration.

sonal computer has a MIDI-interface board (MPU-401).
The kernel and clock processes run on the workstation,
and the driver process runs on the personal computer.
For simplicity, we implement only the MIDI drive proc-
ess currently, and not the DAI drivers yet. Musical ap-
plications may run on any workstation or personal com-
puter in the network.

The current Music Server is written entirely in the C
language. The kernel process has about 2500 lines, the
driver process about 1500 lines, and the clock process
about 300 lines. To write application client programs in
prolog, foreign predicate routines written in C (500
lines) and SICStus Prolog (700 lines) [7] are provided.

We now meéntion the latency parameters introduced
in Section 3. In the current prototype of the Music
Server system, Ip is set at 300 milliseconds, W at 150
milliseconds, and 7z at 200 milliseconds. The time spent
for network propagation and message composi-
tion/decomposition is evaluated to be an average of
30~ 40 milliseconds. The fluctuation of the time is usu-
ally within 10 milliseconds, although this value depends
on the running conditions and the network configura-
tion.

4.2 Sample Sessions

This subsection demonstrates how to play and record
musical events while using the interface provided by
Music Server.

4.2.1 Play

Let us give you a sample session of playing musical
events. First, you create an application client and make
a connection to Music Server. The application client
issues the following commands in turn:

(1) create a track
A new track with its play-flag off is created
in Music Server. The identifier of the newly creat-
ed track returns.
(2) post musical events
The client can post musical events to be per-
formed in any order by indicating the target
track. The identifiers of the musical events post-

ed may return.

SUN3 SUN3

O o)
ethernet

NEC PC98

MPU-401

Fig. 16 Prototype Configuration,

Musical Instruments

(3) set a time map
A time map is combined with the target track.
The time map can be newly allocated or can be
reused among the existing time maps. The client
can modify the contents of the time map as well.
(4) turn on the play-flag
When the play-flag is on, the track is active.
Music Server is executing the musical events one
by one along with advancing the time.
(5) post musical events
Any musical event whose time is after the cur-
rent time of Music Server, will be executed even-
tually. Events whose times are before the cur-
rent time, however, are never executed and are
simply held in Music Server.

The clients, of course, can own more than one track,
and turn on more than one play-flag simultaneously.
In such a case, every active track sends musical events.
Moreover, clients can dynamically toggle the play-flag
and alternate between play and pause.

4.2.2 Record

The procedure of recording is almost the same as
playing. Next, we show you a sample session of record-
ing musical events. First, you create an application
client and make a connection. Then, the application
client issues the following commands in turn:

(1) create a track
(2) set a time map
Do the same as you would to play (see above).
(3) turn on the record-flag
When the record~flag of the track is on, the
track is active. Music Server alternatively out-
puts received data in the active track and time
stamps it.

If more than one track is active, Music Server dupli-
cates the data for each active track and puts the data
into each track. The clients can dynamically toggle the
record-flag and alternate between record and pause.

Both the play~flag and record-flag can be on at the
same time. Then, while performing the current events

track A [\]

I —

track A []

track B l

track B

Fig. 17 Hierarchical Tracks.

one after another, Music Server receives incoming data
from the external instruments.

5. Problems and Future Research

5.1 Hierarchy of Tracks

Usually, music forms a hierarchy: e.g. form, part,
period, phrase, chord, note. Thus, it is natural that we
introduce a hierarchy into our model. That is, we think
that it is useful for tracks to be able to hold not only
events but also tracks. In the current model, a track
holds only events.

In Fig. 17, track A holds track B twice at different
time. This track structure means a repeated phrase. In
the current model, a track has its own clock and time
map. When realizing the shared and hierarchical tracks,
there might be more than two current points on a track
simultaneously. Since shared track B needs multiple
clocks and multiple time maps, we have to modify our
model in order to manipulate those multiple time con-
trol.

5.2 Time Map

Although the time map concept has been found to be
essential and very useful, it still has several problems.

Firstly, a more powerful timing mechanism is need-
ed. That is, there are time progression patterns which
the time map cannot express: expressing a vibration of
infinite duration, expressing reverse time progression,
and implementing tapedeck operations (e.g. fast-for-
ward, rewind, and pause), to name a few.

Next, there is the question of at what level the time
map should be supported. The purpose of the time map
mechanism is to control the event-execution rate. It is
possible to support it at higher application program
levels, that is, at the application client level. It is
thought to be the lowest level that Music Server sup-
ports the time map. The optimal point between redun-
dancy and functionality must be investigated further.

T. Aoyacl and K. HIRATA

5.3 Action Express

In the current design, where several processes are syn-
chronized by interprocess communications, it may not
be sufficient to catch realtime events and to respond to
them quickly (within a very short term). To solve this
problem, we are developing a technique called an action
express. If an action (an event with no time) with an ac-
tion express tag is posted in Music Server, Music Server
transparently relays the action to the driver process.
This processing of an action express can be viewed as an
execution with the highest priority. As soon as the
driver process receives the action express, the action is
written to the MPU board with zero waits. Thus, the
time when an action express is actually executed is deter-
mined by the sum of the response time of Music Server,
the network delay, and the response time of the driver
process This sum is much smaller than the buffer delay,
which was evaluated in Section 3.3, but fluctuates with
current conditions.

6. Concluding Remarks

The design and the architecture of the Music Server
system were described. We have proven that the two-
level realtime control works well under the condition of
usual system load in terms of network traffic and proc-
esses. Since our realtime control mechanism is rather
simple, we can predict the system latency. Starting from
the Music Server system, we will investigate a
distributed musical system more suitable for real-time
use.

From the experience gained through the development
of more sample applications, the functionality of Music
Server’s command structure must be examined and
refined.

Acknowledgement

We would like to thank Mr. Shigeki Goto, Mr.
Yutaka Ogawa, Mr. Hirohide Mikami, and Mr. Toshi
Takada for their helpful advice and valuable discus-
sion.

References

1. ANDERSON, D. P. and KuiviLA, R. Accurately Timed Generation
of Discrete Musical Events, Computer Music Journal, 10, 3 (1986).
2. ANDERSON, D. P. and KuiviLA, R. A System for Computer Music
Performance, ACM Trans. Comput. Syst., 8, 1 (1990).

3. ANDERSON, D. P. and KuiviLa, R. A Model of Real-time Com-
putation for Computer Music, Proc. of International Computer
Music Conference 1986.

4. BOYNTON, L., LAVOIE, P., ORLAREY, Y., RUEDA, C. and WESSEL,
D. MIDI-LISP A LISP-Based Music Programming Environment for
the Macintosh, Proc. of International Computer Music Conference
1986.

5. CoINTE, P. and RoODET, X. Formes: an Object & Time Oriented
System for Music Composition and Synthesis, ACM Symposium on
LISP and Functional Programming (1984).

6. CoLLINGF, D. J. and ScHEIDT, D. J. Moxie for the Atari ST,
Proc. of International Computer Music Conference 1988.

Music Server System—Distributed Music System on Local Area Network—

7. CARLSSON, M. and WIDEN, J. SICStus Prolog User’s Manual,
SICS Research Report R88007 (1988).

8. DANNENBERG, R. B. The CMU MIDI Toolkit Manual, Center for
Art and Technology, College of Fine Arts, CMU (Aug. 1986).

9. DANNENBERG, R. B., MCAVINNEY, P. and RUBINE, D. Arctic: A
Functional Language for Real-Time Systems, Computer Music Jour-
nal, 10, 4 (1986).

10. HirATA, K. and Aovaci, T. Music Server, Proc. of Interna-
tional Computer Music Conference 1989.

11. Jarfg, D. Ensemble Timing in Computer Music, Computer
Music Journal, 9, 4 (1985).

9

12. Japan MIDI Standard Committee MIDI-1.0 Specification (1986).
13. KuiviLa, R. and ANDERsON, D. P. Timing Accuracy and
Response Time in Interactive Systems, Proc. of International Com-
puter Music Conference 1986.

14. PorE, S. T. A Smalltalk-80-based Music Toolkit, Proc. of Inter-
national Computer Music Conference 1987.

1S. THompsoN, T. and BaraN, N. The NeXT Computer, Byte
(Nov. 1988), 158-175.

(Received November 28, 1989; revised December 5, 1990)

