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Many everyday systems are large, complicated, and
non-linear. They often comprise a large number of
small systems that interact in a complicated manner.
To design and control these systems, we need to know
their various properties. However, even if we knew all
the properties of the elements that constitute the tar-
get system, we cannot always control the elements. We
may ¯nd it more useful to know the macroscopic and
statistical properties of the target system, such as the
moments, response time, and power spectra, than the
microscopic and minute ones.

Various methods have been developed for approx-
imately analyzing non-linear systems, including the
Galerkin method and ones based on perturbation anal-
ysis and asymptotic analysis. These methods expand
the solution into a series and determine the coe±cient
of each function. By using these methods, we can ob-
tain approximate solutions to deterministic di®erential
equations [1], [2], [3], stochastic di®erential equations
[4], and partial di®erential equations of a probability
density function [5]. A linearization approach that cre-
ates a linear model by linearizing the target system at
the equilibrium point is widely used. With this model,
we can use linear control theory [6] to control the target
system.

However, approximate solutions obtained by the

above methods are rather complex, or the linear model
obtained in the neighborhood of the equilibrium point
is too simple to express global properties. Thus, we can-
not always use these methods to control everyday sys-
tems or to investigate their macroscopic and statistical
properties. Moment vector equations (MVEs), which
were recently developed [7], can be used to analyze
the statistical properties, such as the mean, variance,
covariance, and power spectrum, for one-dimensional
discrete-time systems. However, this does not mean
that MVEs always approximate the non-linear systems
or that we can use MVEs as an approximation of
non-linear systems to control them. Moreover, MVEs
should also work for multi-dimensional or continuous-
time systems.

The systematic procedures presented in this paper
solve these problems by expanding a previous work on
one-dimensional discrete-time systems [7]. Using these
procedures, we can construct MVEs and use them to
analyze the statistical properties of multi-dimensional
non-linear discrete- and continuous-time equations. A
combination of non-linear equations can be expressed
approximately by using a combination of MVEs of the
non-linear equations, demonstrating that an MVE ap-
proximates a non-linear system itself. Evaluation of
the statistical properties of Lorenz equations and those
of a combination of logistic equations by using MVEs
showed that MVEs can be used as an approximation of
non-linear equations in statistical measurements.

This section presents systematic procedures by expand-
ing a previous work [7] to approximate various non-
linear equations to MVEs.

2.1 MVEs for Discrete-time Systems

Let us consider the following multi-dimensional
discrete-time non-linear systems

s`(n+ 1) = f`( (n)) for 1 · ` · L; (1)

where
def
= t(s1,¢ ¢ ¢,sL), L is the number of variables,

n = 0, 1, 2, ¢ ¢ ¢ is a discrete time,
def
= f j·s` · s` ·

·s` + T` for 1 · ` · Lg is the domain of the de¯nition
of (n), and t denotes transposition.
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Let fÁig be a linear independent system that con-
stitutes the basis of (see Appendix A), and let us
abbreviate the variables de¯ned above as follows:

s`
def
= s`(n);

s0`
def
= s`(n+ 1);

def
= (n); (2)

Ái
def
= Ái( (n));

Á0
i
def
= Ái( (n+ 1)):

To derive an MVE, let us assume the following with
respect to Eq. (1):

We can expand E[Á0
ij ] in a Fourier

series as follows:

E[Á0
ij ] =

NX

j=0

aijÁj + "i( ); (3)

where E[¢] is a mathematical expectation, "i( ) is a
residual, and Á0 is a constant.

By using Eq. (3), we can expand E[Á0
i] as follows:

E[Á0
i] =

Z

Á0
ip(Á

0
i)dÁ

0
i

=

Z

Á0
i

Z

p( )p(Á0
ij )d dÁ0

i

=

Z

p( )E[Á0
ij ]d

=

NX

j=0

aijE[Áj ] + E["i( )]; (4)

where p(¢) denotes a probability density function.
When fÁig is an orthonormal basis, aij is obtained by
using Eq. (A¢ 2) as follows:

aij =

Z

Ái( ( ))Áj( )d ; (5)

where
def
= t(f1; ¢ ¢ ¢ ; fL). Let us assume that

E["i( )] = 0, and let us de¯ne ~(n) and ~ as follows:

~(n)
def
= t(E[Á0( (n))]; ¢ ¢ ¢ ; E[ÁN ( (n))]);

~ def
=

2

6
4

a00 ¢ ¢ ¢ a0N
...

. . .
...

aN0 ¢ ¢ ¢ aNN

3

7
5 :

Then Eq. (4) is expressed by the following MVE:

~(n+ 1) = ~ ~(n): (6)

In Assumption 1, we assumed that E[Á0( (n))] is con-
stant Á0. Thus, by rewriting Eq. (6), we obtain an
MVE, which is a linear equation in a moment vector
space, as follows:

(n+ 1) = (n) + ; (7)

where , , and (n) are de¯ned as follows:

(n)
def
= t(E[Á1( (n))]; ¢ ¢ ¢ ; E[ÁN ( (n))]);

def
=

2

6
4

a11 ¢ ¢ ¢ a1N
...

. . .
...

aN1 ¢ ¢ ¢ aNN

3

7
5 ;

def
=

2

6
4

a10Á0

...
aN0Á0

3

7
5 :

2.2 MVEs for Continuous-time Systems

In this section, MVEs for multi-dimensional continuous-
time non-linear systems are derived in the same manner
as in Sect. 2.1. Let us consider the following systems

_s`(t) = f`( (t)) for 1 · ` · L; (8)

where t is a continuous time, _s`(t) denotes ds`(t)=dt,
and (t) 2 .

Because E[¢] is a linear operator, dE[Ái( (t))]=dt
= E[dÁi( (t))=dt]. Thus, by using the following abbre-
viation instead of Eq. (2)

s`
def
= s`(t);

s0`
def
= ds`=dt;

def
= (t); (9)

Ái
def
= Ái( (t));

Á0
i
def
= dÁi( (t))=dt;

and assuming that Assumption 1 holds, we can obtain
the following equation from Eq. (4):

dE[Ái]=dt = E[Á0
i]

=

NX

j=0

aijE[Áj ] + E["i( )]: (10)

Here, by using Eq. (8), we can express Á0
i as follows:

Á0
i =

LX

`=1

@Ái

@s`
f`( ):

Thus, when fÁig is an orthonormal basis, aij is ob-
tained by using Eq. (A¢ 2) as follows:

aij =

Z

(
LX

`=1

@Ái( )

@s`
f`( ))Áj( )d : (11)

Let us assume that E["i( )] = 0, and let us de¯ne ~(t)
by

~(t)
def
= t(E[Á0( (t))]; ¢ ¢ ¢ ; E[ÁN ( (t))]):

From Eq. (10), we obtain the following MVE:

_~(t) = ~ ~(t); (12)
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where _~(t)
def
= d~(t)=dt. As in Sect. 2.1, we assume that

E[Á0( (t))] is constant Á0. Thus, the above equation
can be rewritten as the following MVE:

_ (t) = (t) + ; (13)

where _ (t)
def
= d (t)=dt, and (t) is de¯ned by

(t)
def
= t(E[Á1( (t))]; ¢ ¢ ¢ ; E[ÁN ( (t))]):

2.3 A Combination of Discrete-time Systems

Let us consider the following three discrete-time sys-
tems in order to explain how we can express a combi-
nation of discrete-time systems:

I`(n+ 1) = I`( I`(n)) for ` = 1; 2;

II(n+ 1) = II( II(n)):

By using bases fÁig and fÁ`ig, we can express the
MVEs of I1, I2, and II by

~I`(n+ 1) = ~
I`~I`(n) for ` = 1; 2;

~II(n+ 1) = ~
II~II(n);

where

~I`(n)
def
= t(E[Á`0( I`(n))]; ¢ ¢ ¢ ; E[Á`N`

( I`(n))]);

~II(n)
def
= t(E[Á0( II(n))]; ¢ ¢ ¢ ; E[ÁN ( II(n))]);

def
= t(Á0; ¢ ¢ ¢ ; ÁN );

`
def
= t(Á`0; ¢ ¢ ¢ ; Á`N`

):

Let us now construct a new system, , by connecting
the above three systems, I1, I2, and II, as shown in
Fig. 1. That is,

(n+ 1) = ( (n));

(n+ 1)
def
= II(n+ 1);

(n)
def
= t(t I1(n);

t
I2(n));

def
= II( I1; I2):

(14)

For given `, let and ~(n) be

~(n)
def
= t(E[Á0( (n))]; ¢ ¢ ¢ ; E[ÁN ( (n))]);

def
= 1 ­ 2; (15)

and let us express the MVE of by

~(n+ 1) = ~ ~(n); (16)

where ­ denotes a matrix direct product. From Eqs.
(14) and (15), the following equation holds:

~(n) = ~I1(n)­ ~I2(n): (17)

Because I1 and I2 are independent, by using the fol-
lowing new variables

~ 0
I1

def
= ~

I1~I1(n);

~ 0
I2

def
= ~

I2~I2(n);

the input to II can be expressed by ~ 0
I1 ­ ~ 0

I2. There-
fore, by using the following formulae with respect to
the matrix direct product [9]

t( ­ ) = t ­ t ; (18)

( ­ )( ­ ) = ( )­ ( ); (19)

we obtain the following equation:

~(n+ 1) = ~
II(~

0
I1 ­ ~ 0

I2)

= ~
II( ~ I1 ­ ~

I2)~(n):

Therefore, coe±cient matrix ~ in the MVE of is
expressed by the combination of coe±cient matrices in
the MVEs of I1, I2, and II as follows:

~ = ~
II( ~ I1 ­ ~

I2): (20)

Because it is assumed that E[Á0( (n))] is constant Á0,
Eq. (16) can be rewritten as Eq. (7) in the same manner
as Eq. (6).

Let ¸i be the ith eigenvalue of matrix in the MVE

of Eq. (7) or (13), i be the eigenvector for ¸i, ¤
def
=

diag[¸1; ¢ ¢ ¢ ; ¸N ], and
def
= [ 1; ¢ ¢ ¢ ; N ]. In this sec-

tion, various statistical properties of non-linear equa-
tions are derived based on , ¤, and by expanding
a previous work [7]. To evaluate in Sect. 4 the accuracy
of the statistical properties that are obtained based on
MVEs, the properties based on a numerical solution of
non-linear equations are also de¯ned in this section.

3.1 Moments for Discrete Time Systems

In this section, moments of s`(n) in Eq. (1) are derived
under the following assumption:

Equation (7), which is an MVE of
Eq. (1), has a unique equilibrium point, and it does
not diverge. That is, 8¸i 6= 1, and 8j¸ij · 1 [8].
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3.1.1 Moments Based on a Numerical Solution

From the time average of the sequence of s`(n), s`(n+
1), ¢ ¢ ¢ obtained from the numerical solution of Eq.
(1), moment hhs`(n)

kii and covariance hhs`(n)sº(n)ii
based on a numerical solution are computed, where hh¢ii
denotes a ¯nite-time average, and it is de¯ned for a
discrete-time variable x(n) as follows:

hhx(n)ii
def
=

1

¿max

¿max¡1X

¿=0

x(n+ ¿ ): (21)

Variance ¾`
2 and correlation coe±cient ½`º are obtained

by the following equations:

¾2
` = hhs`(n)

2ii ¡ hhs`(n)ii
2; (22)

½`º =
hhs`(n)sº(n)ii ¡ hhs`(n)iihhsº(n)ii

¾`¾v
: (23)

3.1.2 Moments Based on an MVE

Let in¯nite-time average hx(n)i of discrete-time vari-
able x(n) be [10]

hx(n)i
def
= lim

¿max!1

1

¿max

¿max¡1X

¿=0

x(n+ ¿): (24)

From Appendix B.1, ¹
def
= lim

n!1
h (n)i y is equal to ¤

in Eq. (7), where ¤ is the equilibrium point of (n) in
Eq. (7). Thus, when Assumption 2 holds, ( ¡ )¡1

exists, and ¹ is derived by the following equation [8]:

¹ = ¤

= ( ¡ )¡1 ; (25)

where is a unit matrix.
Let us now expand E[s`(n + 1)] and E[s`(n +

1)sº(n + 1)] in a Fourier series as follows in the same
manner as in Eq. (4):

E[s`(n+ 1)] = E[f`( (n))]

=

NX

j=0

³`;jE[Áj( (n))]; (26)

E[s`(n+ 1)sº(n+ 1)] = E[f`( (n))fº( (n))]

=

NX

j=0

³`º;jE[Áj( (n))]: (27)

At the equilibrium point of Eq. (7), E[Ái( (n +
1))] = E[Ái( (n))], and thus, Eqs. (26) and (27) yield
E[s`(n + 1)] = E[s`(n)] and E[s`(n + 1)sº(n + 1)] =

E[s`(n)sº(n)]. Let these values be E¤[Ái( )], E¤[s`],
and E¤[s`sº ], respectively. From Eqs. (25) through

(27), moment E[sk` ]
def
= lim

n!1
hE[s`(n)

k]i for k = 1; 2

and covariance E[s`sº ]
def
= lim

n!1
hE[s`(n)sº(n)]i based

on the MVE of Eq. (7) are computed by using the fol-
lowing equations:

E[s`] = E¤[s`]

=

NX

j=0

³`;jE
¤[Áj( )]; (28)

E[s`sº ] = E¤[s`sº ]

=

NX

j=0

³`º;jE
¤[Áj( )]: (29)

Here, E¤[Áj( )] is an element of ¤. The variance and
correlation coe±cient are obtained in the same manner
as in Eqs. (22) and (23).

3.2 Power Spectra for Discrete-time Systems

Periodogram [10], which is de¯ned based on a ¯nite-
duration Fourier transform and is an estimation of the
power spectrum, of s`(n) in Eq. (1) is derived in this
section, assuming that Assumption 2 holds.

3.2.1 A Periodogram Based on a Numerical Solution

Let F`(k) be the time average of the Fourier transform
of sequence s`(n), s`(n+ 1), ¢ ¢ ¢ obtained from the nu-
merical solution of Eq. (1) as follows:

F`(k)
def
= hh

W¡1X

m=0

s`(n+m)e¡{!0mkii; (30)

where { is an imaginary unit, k 2 f0; 1; ¢ ¢ ¢ ;W ¡ 1g,

and !0
def
= 2¼=W . From the above equation, we obtain

periodogram S``(k) based on the numerical solution of
Eq. (1) as follows:

S``(k)
def
=

1

W
jF`(k)j

2: (31)

3.2.2 A Periodogram Based on an MVE

Correlation function r`º(m) of s`(n) and sº(n) is de-
¯ned by

r`º(m)
def
= lim

n!1
hE[s`(n)sº(n+m)]i: (32)

The right-hand side of Eq. (32) is derived from Eq. (35)
described in Section 3.2.3. From Eq. (32), the power

spectrum of s`(n) based on the MVE of Eq. (1), Ŝ``(k),
is computed by the following equation for º = `:
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Ŝ`º(k) =

W¡1X

m=0

r`º(m)e¡{!0mk: (33)

For º 6= `, the above equation denotes the cross power
spectrum of s`(n) and sº(n) [10].

3.2.3 The MVE of the Correlation Function

The right-hand side of Eq. (32) is derived in this section.
Consider the following simultaneous equations of Eqs.
(7) and (26):
2

6
6
6
4

E[sº(n+ 1)]
E[Á1( (n+ 1))]

...
E[ÁN ( (n+ 1))]

3

7
7
7
5
= ^

º

2

6
6
6
4

E[sº(n)]
E[Á1( (n))]

...
E[ÁN ( (n))]

3

7
7
7
5
+ ^

º ;

where

^
º

def
=

2

6
6
6
4

0 ³º;1 ¢ ¢ ¢ ³º;N
0 a11 ¢ ¢ ¢ a1N
...

...
. . .

...
0 aN1 ¢ ¢ ¢ aNN

3

7
7
7
5
; ^ º

def
=

2

6
6
6
4

³º;0Á0

a10Á0

...
aN0Á0

3

7
7
7
5
:

Let ^`º(m;n) be

^`º(m;n)
def
=

2

6
6
6
4

E[s`(n)sº(n+m)]
E[s`(n)Á1(n+m)]

...
E[s`(n)ÁN (n+m)]

3

7
7
7
5
:

By replacing g`( (n)) with s`(n) in Eq. (A¢ 13) in Ap-
pendix C, we obtain the following equation:

^`º(m+ 1;n) = ^
º ^`º(m;n) + E[s`(n)] ^ º : (34)

To eliminate the e®ect of the initial value of Eq. (1)
and to derive the power spectrum even when Eq. (34)

oscillates y, consider ¹̂
`º(m)

def
= lim

n!1
h^`º(m;n)i: We

obtain ¹̂
`º(m) from the limit of the time average of Eq.

(34) for n ! 1 as follows:

¹̂
`º(m+ 1) = ^

º
¹̂
`º(m) + E¤[s`] ^ º : (35)

By computing the above equation for m = 0; 1; 2; ¢ ¢ ¢
step by step, we can obtain the right-hand side of Eq.
(32). The initial value of the above equation, ¹̂`º(0), is
derived in Appendix D.1.

3.3 Moments for Continuous-time Systems

This section shows the moments of s`(t) in Eq. (8) in
the same manner as in Sect. 3.1 under the following
assumpiton:

Equation (13), which is an MVE of
Eq. (8), has a unique equilibrium point, and it does not
diverge. That is, 8¸i 6= 0, and 8Re[¸i] · 0 [8].

3.3.1 Moments Based on a Numerical Solution

Moment hhs`(t)
k
ii and covariance hhs`(t)sº(t)ii are de-

rived based on a numerical solution by solving Eq. (8)
numerically. Here, hh¢ii is a ¯nite time average, and it
is de¯ned for continuous variable x(t) as follows:

hhx(t)ii
def
=

1

¿max

Z ¿max

0

x(t+ ¿ )d¿: (36)

The variance and correlation coe±cient are derived in
the same manner as in Eqs. (22) and (23).

3.3.2 Moments Based on an MVE

Let hx(t)i be the in¯nite-time average of continuous
variable x(t) as follows:

hx(t)i
def
= lim

¿max!1

1

¿max

Z ¿max

0

x(t+ ¿ )d¿ : (37)

Appendix B.2 shows that ¹
def
= lim

n!1
h (t)i is equal to

equilibrium point ¤ in Eq. (13). Thus, if Assumption
3 holds, ¡1 exists [8], and ¹ is expressed by

¹ = ¤

= ¡ ¡1 : (38)

Let us expand E[s`(t)] and E[s`(t)sº(t)] as follows:

E[s`(t)] =

NX

j=0

´`;jE[Áj( (t))]; (39)

E[s`(t)sº(t)] =

NX

j=0

´`º;jE[Áj( (t))]: (40)

Because E[Ái( )] is a constant at the equilibrium point,
Eqs. (39) and (40) show that E[s`(t)] and E[s`(t)sº(t)]
are also constants at the equilibrium point. Let each
constant be E¤[Ái( )], E¤[s`], and E¤[s`sº ], respec-

tively. From Eqs. (38) through (40), moment E[sk` ]
def
=

lim
t!1

hE[s`(t)
k]i for k = 1; 2 and covariance E[s`sº ]

def
=

lim
t!1

hE[s`(t)sº(t)]i are obtained based on the MVE of

Eq. (13) by using the following equations:

E[s`] = E¤[s`]

=

NX

j=0

´`;jE
¤[Áj( )]; (41)

E[s`sº ] = E¤[s`sº ]

=

NX

j=0

´`º;jE
¤[Áj( )]: (42)

Here, E¤[Áj( )] is an element of ¤. The variance and
correlation coe±cient are obtained in the same manner
as in Eqs. (22) and (23).
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3.4 Power Spectra for Continuous-time Systems

The power spectrum of s`(t) in Eq. (8) is derived in
this section, assuming that Assumption 3 holds.

3.4.1 A Periodogram Based on a Numerical Solution

Let s`(0), s`(¢t), s`(2¢t), ¢ ¢ ¢ be a sequence obtained
by solving Eq. (8) numerically and sampling solution
s`(t) at periodic intervals ¢t. By rewriting s`(n¢t)
as s`(n) and applying s`(n) to Eqs. (30) and (31), we
can derive periodogram S``(k), as an estimation of the
power spectrum of s`(t) based on a numerical solution.

3.4.2 A Periodogram Based on an MVE

Correlation function r`º(¿ ) of s`(t) and sº(t) is de¯ned
by the following equation:

r`º(¿ )
def
= lim

t!1
hE[s`(t)sº(t+ ¿ )]i: (43)

The right-hand side of the above equation is derived
from Eq. (47) in Sect. 3.4.3. Let r`º(0), r`º(¢t),
r`º(2¢t), ¢ ¢ ¢ be a sequence obtained by sampling r`º(¿ )
at periodic intervals ¢t. Let us rewrite r`º(m¢t) as
r`º(m) and apply r`º(m) to Eq. (33). Then we obtain

periodgram Ŝ``(k) based on an MVE yy.

3.4.3 The MVE of the Correlation Function

The right-hand side of Eq. (43) is derived in this section.
First, let us expand E[s`(t)sº(t+ ¿ )] by using Eq. (39)
as follows:

E[s`(t)sº(t+¿ )] = E[s`(t)

NX

j=0

´º;jÁj( (t+ ¿))]

= ´º;0Á0E[s`(t)]

+

NX

j=1

´º;jE[s`(t)Áj( (t+ ¿ ))]

= ´º;0Á0E[s`(t)]+
NX

j=1

´º;j ^`(¿ ; t); (44)

where

^`(¿ ; t)
def
=

2

6
4

E[s`(t)Á1( (t+ ¿))]
...

E[s`(t)ÁN ( (t+ ¿))]

3

7
5 :

Next, let us derive ^`(¿ ; t). From the linearity of
E[¢], the following equation holds:

dE[s`(t)Ái( (t+ ¿ ))]=d¿ = E[s`(t)dÁi( (t+ ¿ ))=d¿ ]:

Thus, we obtain the following equation for ¿ ¸ 0 by
replacing g`( (t + ¿)) with s`(t) in Eq. (A¢ 13) in Ap-
pendix C:

d^`(¿ ; t)=d¿ = ^`(¿ ; t) + E[s`(t)] :

By solving the above equation, we obtain the following
equation [8]:

^`(¿ ; t) = diag[e¸i¿ ] ¡1^`(0; t)

+ diag[¸¡1
i (e¸i¿¡1)] ¡1E[s`(t)] : (45)

Let us consider the time average of the above equa-
tion at the limit as t tends to 1 y. Then we obtain the
following equation:

¹̂
`(¿ ) = diag[e¸i¿ ] ¡1 ¹̂

`(0)

+ diag[¸¡1
i (e¸i¿¡1)] ¡1E¤[s`] ; (46)

where ¹̂
`(¿ )

def
= lim

t!1
h^`(¿ ; t)i. By replacing

lim
t!1

hE[s`(t)sº(t+ ¿ )]i with r`º(¿ ), lim
t!1

h^`(¿ ; t)i with

¹̂
`(¿ ), and lim

t!1
hE[s`(t)]i with E¤[s`] in the time av-

erage of Eq. (44) for t ! 1, we obtain correlation
function r`º(¿ ) as follows:

r`º(¿ ) = ´º;0Á0E
¤[s`] +

NX

j=1

´º;j ¹̂`(¿): (47)

Initial value ¹̂
`(0) of the above equation is derived in

Appendix D.2.

To evaluate the accuracy of the MVEs for continuous-
time systems described in Eq. (13), the statistical prop-
erties, such as the mean, standard deviation, and peri-
odogram, of each variable in the following Lorenz equa-
tions [11] were investigated:

_s1 = ®1(¡s1 + s2);

_s2 = s1(®2 ¡ s3)¡ s2; (48)

_s3 = s1s2 ¡ ®3s3;

where (®1; ®2; ®3) = (10; 28; 8=3). The attractor is
shown in Fig. 2. Figures 3 through 6 show the statistical
properties of Lorenz equations derived based on MVEs
(see Sects. 3.3.2 and 3.4.2) for various values of N`,
whereN` for ` = 1; 2; 3 denotes the degree of the Fourier
series (see Appendix A), (·s1; ·s2; ·s3) = (¡25;¡25; 0),
(T1; T2; T3) = (50; 50; 50), and W = 512. To evaluate
the accuracy of the statistical properites derived based
on the MVE, those based on the numerical solution of
Eq. (48) (see Sects. 3.3.1 and 3.4.1) are also shown in
these ¯gures (indicated "Num." on the abscissa axis).

From these ¯gures, the mean, standard deviation,
and periodogram based on the MVE approach to those
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based on the numerical solutions as N` increases. If As-
sumption 1 holds, that is, the Fourier series converges as
N` increases, the statistical properties converge to the
true values as N` increases. We can also see the di®er-
ence between the stochastic motions in s1 and s2 and
the deterministic motion in s3 from the periodograms.
Thus, an MVE can contain statistical properties, such
as the mean, standard deviation, and periodogram, of
a non-linear equation.

Although we can derive the statistical properties
of a non-linear equation based on an MVE, this does
not mean that the MVE always approximates the non-
linear equation itself. To show that MVEs can be an
approximation of non-linear equations, the statistical
properties of a combination of the following logistic
equations [11] were evaluated by using a combination
of their MVEs:

sI`(n+ 1) = fI`(sI`(n))
def
= ®`sI`(n)(1¡ sI`(n)) for ` = 1; 2;

where ®1 = 3:8 and ®2 = 3:9. Consider the following
discrete-time non-linear system:

(n+ 1) = ( (n)); (49)

which is constructed by connecting the above two lo-
gistic equations as shown in Eq. (14) and Fig. 1, where

II(n)
def
= t(sII1(n); sII2(n));
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II(n+ 1) = II( II(n))

= II(n);

def
=

·
1¡ c c
c 1¡ c

¸

:

That is, s1(n) and s2(n) are independent when c = 0,
and s1(n) and s2(n) a®ect each other when c 6= 0.

Based on Sects. 3.1.2 and 3.2.2, the statistical
properties, such as the means, standard deviations, cor-
relation coe±cients, and periodograms, of s1(n) and
s2(n) in Eq. (49) were evaluated using MVEs, which
are constructed as shown in Sect. 2.3 from the MVEs of
fI1, fI2, and II. The statistical properties are shown
in Figs. 7 through 9 (labeled "MVE" on the abscissa
axis), where W = 512, T` = 1, ·s` = 0, and N` = 16 for
` = 1; 2. The periodograms for c = 0 were multiplied by
3, those for c = 0:05 were multiplied by 2, and those for
c = 0:1 were divided by 40 in order to arrange them in
the same ¯gures. To evaluate the accuracy of the MVE
approach, the statistical properties derived based on
the numerical solution of Eq. (49) were also evaluated
according to Sects. 3.1.1 and 3.2.1, and they are shown
in each ¯gure (labeled "Num." on the abscissa axis).

As shown in the ¯gures, the change in c was re-
°ected both in the statistical properties obtained based
on MVEs and in those obtained based on numerical so-
lutions. That is, the means and standard deviations
became equal, the correlation coe±cients changed from
0 to ¡1, and the periodograms became line spectra,
when the value of c changed from 0 to 0:1. These results
show that the statistical properties of a combination of
non-linear equations are expressed by using a combina-
tion of MVEs of these non-linear equations. Therefore,
we can conclude that MVEs are an approximation of
non-linear equations in statistical measurements.

Moment vector equations (MVEs) can be used to ap-

proximate and analyze non-linear equations. We can
not only analyze the statistical properties, such as the
mean, variance, covariance, and power spectrum, of
non-linear equations based on MVEs but also express
a combination of non-linear equations by using a com-
bination of MVEs of these equations. Evaluation of
the statistical properties of Lorenz equations and those
of a combination of logistic equations showed that we
can analyze the statistical properties of these equations
based on MVEs and that we can use MVEs as an ap-
proximation of multi-dimensional non-linear discrete-
and continuous-time equations in statistical measure-
ments. Because MVEs can be used to approximate
non-linear systems and MVEs are linear, it is expect
that we can easily perform stability analysis and con-
trol various non-linear systems. I will report on these
items in the near future.
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The Fourier series expansion of function g( ) with re-

spect to
def
= t(s1; ¢ ¢ ¢ ; sL) 2 is de¯ned by [12]

g( ) =
X

k2

h( )K( ; ); (A¢ 1)

h( )
def
=

Z

g( )K( ; )d ; (A¢ 2)

where
def
= t(k1; ¢ ¢ ¢ ; kL),

def
= f j0 · k` ·

N` for 1 · ` · Lg, h( )s are Fourier coe±cients,
and fK( ; )g is an orthogonal basis de¯ned by the
product of one dimensional orthogonal basis K`(s`; k`)
as follows:

K( ; )
def
=

LY

`=1

K`(s`; k`): (A¢ 3)

Let Ái( ) be the basis of the MVE de¯ned by

Ái( )
def
= K( ; ); (A¢ 4)

where the relationship between i and 2 is obtained
by the following equation:

i =
LX

`=1

k`

LY

º=`+1

Nº : (A¢ 5)

Dimension N of Matrix is obtained as follows:

N =

LY

`=1

(N` + 1)¡ 1:

Let L(s; k) be an orthonormal basis for s 2 [·s; ·s+
T ] de¯ned by [12]:

L(s; k) =

r
2k + 1

T
P (2

s¡ ·s

T
¡ 1; k); (A¢ 6)

where P (x; k) is the Legendre polynomial for x 2
[¡1; 1] de¯ned by

P (x; 0) = 1;

P (x; 1) = x;

P (x; 2) = (3x2 ¡ 1)=2;

P (x; 3) = (5x3 ¡ 3x)=2;

... :

In Sect. 4, K`(s`; k`) is set to L(s`; k`) for 8`.

Under Assumptions 2 and 3, although Eqs. (7) and (13)
have a unique equilibrium point and do not diverge,

the moment vector often oscillates. To derive moments
from the equilibrium point even when the moment vec-
tor oscillates and to eliminate the e®ect of the initial
value of the moment vector, the relationship between
the time average of the moment vector and the equilib-
rium point is derived in this section.

B.1 The Average for Discrete-time Systems

Let ¤ be the equilibrium point of (n) in Eq. (7).
When Assumption 2 holds, 8¸i 6= 1, and ( ¡ )¡1

exists. Thus, we obtain ¤ as follows [8]:

¤ = ( ¡ )¡1 :

The solution of (n) is expressed by [8]

(n) = ¤n ¡1( (0)¡ ¤) + ¤: (A¢ 7)

From the above equation and Assumption 2, time av-
erage ¹ is obtained as follows:

¹
def
= lim

n!1
h (n)i

= ( lim
n!1

h¤ni) ¡1( (0)¡ ¤) + ¤

= ¤: (A¢ 8)

B.2 The Average for Continuous-time Systems

Let ¤ be the equilibrium point of (t) in Eq. (13).
When Assumption 3 holds, ¡1 exists, and ¤ is ex-
pressed by the following equation [8]:

¤ = ¡ ¡1 : (A¢ 9)

The solution to Eq. (13) is as follows [8]:

(t) = diag[e¸it] ¡1
0

+ diag[¸¡1
i (e¸it ¡ 1)] ¡1 : (A¢ 10)

By using Eqs. (A¢ 9) and (A¢ 10), we obtain time aver-
age ¹ as follows:

¹
def
= lim

t!1
h (t)i

= lim
t;¿max!1

1

¿max
( diag[

Z

e¸i(t+¿)d¿ ] ¡1
0

+ diag[

Z
1

¸i
e¸i(t+¿)d¿ ¡

Z
1

¸i
d¿ ] ¡1 )

= ¡ diag[¸¡1
i ] ¡1

= ¡ ¡1

= ¤: (A¢ 11)

Consider function g`( ) and basis fhi( )g with respect
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to vector variable . For convenience, let us use the fol-
lowing abbreviations both for continuous- and discrete-
time systems:

def
= (n) or (t+ ¿);

hi
def
= hi( (n)) or hi( (t+ ¿ ));

h0
i
def
= hi( (n+ 1)) or dhi( (t+ ¿ ))=d¿;

g`
def
= g`( (n)) or g`( (t+ ¿ )):

In this section, correlation function E[g`h
0
i] is derived.

When Assumption 1 holds, we obtain the following
equation both for continuous- and discrete-time sys-
tems:

E[h0
ij ] =

NX

j=0

aijhj + "i( ): (A¢ 12)

Note that h0 is a constant. Assuming that E["i( )] = 0
in Eq. (A¢ 12), we can expand E[g`h

0
i] as follows:

E[g`h
0
i] =

Z Z

g`h
0
ip(h

0
i; )dh0

id

=

Z

g`

Z

h0
ip(h

0
ij )dh0

ip( )d

=

Z

g`E[h0
ij ]p( )d

=

Z

g`(

NX

j=0

aijhj)p( )d

=
NX

j=1

aijE[g`hj ] + ai0h0E[g`]:

Therefore, using coe±cient matrix , the MVE of cor-
relation function E[g`h

0
i] is expressed as follows:

2

6
4

E[g`h
0
1]

...
E[g`h

0
N ]

3

7
5 =

2

6
4

E[g`h1]
...

E[g`hN ]

3

7
5+ E[g`]

2

6
4

a10h0

...
aN0h0

3

7
5 :(A¢ 13)

Initial values of Eqs. (35) and (47) are derived in this
section.

D.1 Discrete-time Systems

We obtain the following equation by expanding
E[s`(n + 1)Ái( (n + 1))] in a series with respect to
E[Áj( (n))] as follows:

E[s`(n+ 1)Ái( (n+ 1))] = E[f`( (n))Ái( ( (n)))]

=

NX

j=0

»`;ijE[Áj( (n))]:

By using the above equation, Eq. (29), and ~(n) de¯ned
in Sect. 2.1, ^`º(0;n+ 1) can be expressed by

^`º(0;n+ 1) = ^
`º ~(n); (A¢ 14)

where ^
`º is de¯ned by

^
`º

def
=

2

6
6
6
4

³`º;0 ³`º;1 ¢ ¢ ¢ ³`º;N
»`;10 »`;11 ¢ ¢ ¢ »`;1N
...

...
. . .

...
»`;N0 »`;N1 ¢ ¢ ¢ »`;NN

3

7
7
7
5
:

Here, ³`º;j is a coe±cient used in Eq. (29). Let ~¤ be
the equilibrium point of ~(n). Because lim

n!1
h~(n)i =

~¤ holds from Appendix B.1, we obtain the initial val-
ues of Eq. (35), ¹̂`º(0), by the following equation:

¹̂
`º(0) = ^

`º ~
¤: (A¢ 15)

D.2 Continuous-time Systems

By expanding E[s`(t)Ái( (t))] in a Fourier series with
respect to E[Áj( (t))], we obtain

E[s`(t)Ái( (t))] =

NX

j=0

»`;ijE[Áj( (t))]:

Thus, ^`(0; t) is obtained by

^`(0; t) = `~(t);

where ~(t)
def
= t(E[Á0( (t))]; ¢ ¢ ¢ ; E[ÁN ( (t))]) and

`
def
=

2

6
4

»`;10 »`;11 ¢ ¢ ¢ »`;1N
...

...
. . .

...
»`;N0 »`;N1 ¢ ¢ ¢ »`;NN

3

7
5 : (A¢ 16)

Let ~¤ def
= t(Á0;

t ¤) and ¹~(t)
def
= lim

t!1
h~(t)i. From

Appendix B.2, ¹~(t) = ~¤. Therefore, we can obtain
the initial values of Eq. (47), ¹̂

`(0), by the following
equation:

¹̂
`(0) = `~

¤:
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