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[PAPER

Approximation and Analysis of Non-linear Equations in a

Moment Vector Space

SUMMARY Moment vector equations (MVEs) are pre-
sented for use in approximating and analyzing multi-dimensional
non-linear discrete- and continuous-time equations. A non-linear
equation is expanded into simultaneous equations of generalized
moments and then reduced to an MVE of a coefficient matrix
and a moment vector. The MVE can be used to analyze the sta-
tistical properties, such as the mean, variance, covariance, and
power spectrum, of the non-linear equation. Moreover, we can
approximately express a combination of non-linear equations by
using a combination of MVEs of the equations. Evaluation of
the statistical properties of Lorenz equations and of a combina-
tion of logistic equations based on the MVE approach showed
that MVEs can be used to approximate non-linear equations in
statistical measurements.
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1. Introduction

Many everyday systems are large, complicated, and
non-linear. They often comprise a large number of
small systems that interact in a complicated manner.
To design and control these systems, we need to know
their various properties. However, even if we knew all
the properties of the elements that constitute the tar-
get system, we cannot always control the elements. We
may find it more useful to know the macroscopic and
statistical properties of the target system, such as the
moments, response time, and power spectra, than the
microscopic and minute ones.

Various methods have been developed for approx-
imately analyzing non-linear systems, including the
Galerkin method and ones based on perturbation anal-
ysis and asymptotic analysis. These methods expand
the solution into a series and determine the coefficient
of each function. By using these methods, we can ob-
tain approximate solutions to deterministic differential
equations [1], [2], [3], stochastic differential equations
[4], and partial differential equations of a probability
density function [5]. A linearization approach that cre-
ates a linear model by linearizing the target system at
the equilibrium point is widely used. With this model,
we can use linear control theory [6] to control the target
system.

However, approximate solutions obtained by the
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above methods are rather complex, or the linear model
obtained in the neighborhood of the equilibrium point
is too simple to express global properties. Thus, we can-
not always use these methods to control everyday sys-
tems or to investigate their macroscopic and statistical
properties. Moment vector equations (MVEs), which
were recently developed [7], can be used to analyze
the statistical properties, such as the mean, variance,
covariance, and power spectrum, for one-dimensional
discrete-time systems. However, this does not mean
that MVEs always approximate the non-linear systems
or that we can use MVEs as an approximation of
non-linear systems to control them. Moreover, MVEs
should also work for multi-dimensional or continuous-
time systems.

The systematic procedures presented in this paper
solve these problems by expanding a previous work on
one-dimensional discrete-time systems [7]. Using these
procedures, we can construct MVEs and use them to
analyze the statistical properties of multi-dimensional
non-linear discrete- and continuous-time equations. A
combination of non-linear equations can be expressed
approximately by using a combination of MVEs of the
non-linear equations, demonstrating that an MVE ap-
proximates a non-linear system itself. Evaluation of
the statistical properties of Lorenz equations and those
of a combination of logistic equations by using MVEs
showed that MVEs can be used as an approximation of
non-linear equations in statistical measurements.

2. MVEs for Multi-dimensional Systems

This section presents systematic procedures by expand-
ing a previous work [7] to approximate various non-
linear equations to MVEs.

2.1 MVE:s for Discrete-time Systems

Let wus consider the following multi-dimensional
discrete-time non-linear systems

se(n+1) = fi(s(n)) for 1<L<L, (1)

def . .
where s = *(s1,---,51), L is the number of variables,

n=20,1, 2, - is a discrete time, S - {s]8¢ < sy <
S0+ Ty for 1 < ¢ < L} is the domain of the definition
of s(n), and t denotes transposition.



Let {¢;} be a linear independent system that con-
stitutes the basis of § (see Appendix A), and let us
abbreviate the variables defined above as follows:

def
Sy é 9@( )

5 S seln+ 1),

sdéfs( ), (2)
¢ & i(s(n)),
¢, < gi(s(n +1)).

To derive an MVE, let us assume the following with
respect to Eq. (1):

Assumption 1: We can expand E[¢}|s] in a Fourier

series as follows:
N
ils] = Zaij¢j +ei(s), (3)
=0

where E[] is a mathematical expectation, £;(s) is a
residual, and ¢q is a constant.

By using Eq. (3), we can expand E[¢}] as follows:

= [éntonas;
= oo

(s)E¢;]s]ds

p(¢:|s)dsde)

N
=Y ai;Ble;] + Elei(s)], (4)

7=0

where p(-) denotes a probability density function.
When {¢;} is an orthonormal basis, a;; is obtained by
using Eq. (A-2) as follows:

/ 6:(F(5))6,(s)ds, (5)

where f def Y“(fi,--+,fr). Let us assume that

Elgi(s)] = 0, and let us define Z(n) and A as follows:

@(n) < (Eldo(s(m)]. . Elow (s(n)]).
Qoo " AGON
AL
ano - aNN
Then Eq. (4) is expressed by the following MVE:
&(n+1) = Az(n). (6)

In Assumption 1, we assumed that E[¢o(s(n))] is con-
stant ¢g. Thus, by rewriting Eq. (6), we obtain an
MVE, which is a linear equation in a moment vector
space, as follows:
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xz(n+1)= Az(n) + B, (7

where A, B, and x(n) are defined as follows:
a(n) = (Elor(s(n))], -+, Elon (s(n)))),
aiy -+ a1N a1090

N1 GNN ano®o

2.2 MVEs for Continuous-time Systems

In this section, MVEs for multi-dimensional continuous-
time non-linear systems are derived in the same manner
as in Sect. 2.1. Let us consider the following systems

$o(t) = fo(s(t)) for 1<e<L, (8)

where ¢ is a continuous time, $,(¢) denotes ds,(t)/dt,
and s(t) € S.

Because E[] is a linear operator, dFE[¢;(s(t))]/dt
= E[d¢;(s(t))/dt]. Thus, by using the following abbre-
viation mstead of Eq. (2)

Sy déf S(z(t),

5} def dse/dt,

s < (1), (9)
¢ Lo, ( (1))

¢ < dey(s(t))/dt,

and assuming that Assumption 1 holds, we can obtain
the following equation from Eq. (4):

El¢;]/dt = E[¢]]
N
=" aiElo;] + Eleis)). (10)

j=0
Here, by using Eq. (8), we can express ¢, as follows:

L
r N 09
‘ — 88@

fe(s).

Thus, when {¢;} is an orthonormal basis, a;; is ob-
tained by using Eq. (A-2) as follows:

_ [N~ 9%ils)
o5 = [ TG o). ()

Let us assume that E[e;(s)] = 0, and let us define &(t)
by

& (1) < (Eloo(s(t)]. - Elow (s()))).
From Eq. (10), we obtain the following MVE:

Z(t) = AB(t), (12)



SATOH: APPROXIMATION IN MOMENT VECTOR SPACE

ho

Fig.1 A combination of three discrete-time systems.

where Z(t) o d&(t)/dt. Asin Sect. 2.1, we assume that
E[po(s(t))] is constant ¢g. Thus, the above equation
can be rewritten as the following MVE:

&(t) = Az(t) + B, (13)

where & (t) % dz(t)/dt, and z(t) is defined by

a(t) € (Eloi(s(t)]. . Elon(s(t))]).

2.3 A Combination of Discrete-time Systems

Let us consider the following three discrete-time sys-
tems in order to explain how we can express a combi-
nation of discrete-time systems:

su(n+1) = f(sw(n)) for £=1,2,
su(n+1) = fu(sun(n)).

By using bases {¢;} and {¢s}, we can express the
MVES of f1,, fra and fy by

Zp(n+1) = .ezlmfém(n) for £=1,2,
Zn(n +1) = Agin(n),

where

d10(n) = (Eloeo(ste(n)]. -, Elden, (s1e(n))]).
an(n) L Y(Blo(su(n)].- -, Elon (su(n))]),
&Cl:oft(¢0a"'7¢l\7)7

def ¢

b = e, s dun,)-

Let us now construct a new system, f, by connecting
the above three systems, fi;, fiz, and fy, as shown in
Fig. 1. That is,

s(n+1) = f(s(n)),
s(n+1) of su(n+1),
s(n) = H('sry (n), 'sr2(n)),

def

I = fulfu. fi2)
For given ¢,, let ¢ and &(n) be

&(n) € Y(Elgo(s(n)], -, Elon(s(n)),

3
7 def 7 -
¢ = 1@ P, (15)
and let us express the MVE of f by
&(n+1) = Az(n), (16)

where ® denotes a matrix direct product. From Eqs.
(14) and (15), the following equation holds:

:F:(n) = 5)11 (n) ® 5)12(71). (17)

Because f;; and f, are independent, by using the fol-
lowing new variables

_y def § -

1211 = Anwn(n),

_y def 3 -

1:12 = AIQJ:IQ(W,),
the input to fj; can be expressed by &1, ® &,. There-
fore, by using the following formulae with respect to
the matrix direct product [9]

‘(A®B)="'A®"'B, (18)
(A®C)(B® D) = (AB) @ (CD), (19)

we obtain the following equation:

Z(n+1) = Ag(a), ® &)
= AH(AH X AIQ)CZ:(W,).

Therefore, coefficient matrix A in the MVE of f is
expressed by the combination of coefficient matrices in
the MVEs of fi;, fis, and fy as follows:

A= Ap(An ® Ap). (20)

Because it is assumed that E[¢g(s(n))] is constant ¢y,
Eq. (16) can be rewritten as Eq. (7) in the same manner

as Eq. (6).
3. Analysis

Let \; be the ith eigenvalue of matrix A in the MVE

of Eq. (7) or (13), e; be the eigenvector for A;, A o

diag[A1, -+, An], and M . [e1,---,en]. In this sec-
tion, various statistical properties of non-linear equa-
tions are derived based on A, A, and M by expanding
a previous work [7]. To evaluate in Sect. 4 the accuracy
of the statistical properties that are obtained based on
MVESs, the properties based on a numerical solution of
non-linear equations are also defined in this section.

3.1 Moments for Discrete Time Systems
In this section, moments of s;(n) in Eq. (1) are derived
under the following assumption:

Assumption 2: Equation (7), which is an MVE of
Eq. (1), has a unique equilibrium point, and it does
not diverge. That is, VA; # 1, and V|\;| < 1 [8].



3.1.1 Moments Based on a Numerical Solution

From the time average of the sequence of s¢(n), s¢(n+
1), -+ obtained from the numerical solution of Eq.
(1), moment ({s¢(n)*)) and covariance ((s;(n)s,(n)))
based on a numerical solution are computed, where ({-))
denotes a finite-time average, and it is defined for a
discrete-time variable xz(n) as follows:

1 Tmaxl 1

((w(n)) <

x(n+ 7). (21)

Tln ax

7=0

Variance o,2 and correlation coefficient py, are obtained
by the following equations:

o7 = {(se(n)”)) = ((se(n))?, (22)
_ {se(m)su(n))) — ((se(n))) {(sv (1)) (23)

3.1.2 Moments Based on an MVE

Let infinite-time average (x(n)) of discrete-time vari-
able x(n) be [10]

] Tmaxl 1

(z(n)) ¥ lim

Tmax = Tmax

x(n+ 7). (24)
=0

From Appendix B.1, ' im (x(n)) T is equal to z*
n—oo

in Eq. (7), where &* is the equilibrium point of x(n) in
Eq. (7). Thus, when Assumption 2 holds, (I — A)~*
exists, and & is derived by the following equation [8]:

z=a

=({I-A)7"'B, (25)

where I is a unit matrix.

Let us now expand FE[s;(n + 1)] and E[s¢(n +
1)s,(n 4+ 1)] in a Fourier series as follows in the same
manner as in Eq. (4):

Else(n+1)] = E[fe(s(n))]

N
= G Eles(s(n))]. (26)
j=0

Else(n+ s, (n+1)] = Elfe(s(n))f.(s(n))]

N
= CwiyElgi(s(n)].  (27)
j=0

At the equilibrium point of Eq. (7), Elp:(s(n +
1))] = E[¢i(s(n))], and thus, Egs. (26) and (27) yield
Els¢(n + 1)] = E[s¢(n)] and E[s¢(n + 1)s,(n + 1)] =

fThe reason we have to consider lim {(x(n)) is explained
n— oo

in Appendix B.
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E[s¢(n)s,(n)]. Let these values be E*[¢;(s)], E*[s],

and E*[sgs,], respectively. From Egs. (25) through
T def

(27), moment E[sF] = lim (E[so(n)*]) for k = 1,2
and covariance F[sys,] &ef lim (E[s¢(n)s,(n)]) based

on the MVE of Eq. (7) are computed by using the fol-
lowing equations:

Els)] = E'[s]

N
> i E[4(9)], (28)
j=0

E[SZSV] =L [SeSV]
N
= 3 G B I0y(9)]. (29)
j=0

Here, E*[¢;(s)] is an element of &*. The variance and
correlation coeflicient are obtained in the same manner

as in Egs. (22) and (23).
3.2 Power Spectra for Discrete-time Systems

Periodogram [10], which is defined based on a finite-
duration Fourier transform and is an estimation of the
power spectrum, of sy(n) in Eq. (1) is derived in this
section, assuming that Assumption 2 holds.

3.2.1 A Periodogram Based on a Numerical Solution

Let Fy(k) be the time average of the Fourier transform
of sequence sg(n), se(n + 1), - - obtained from the nu-
merical solution of Eq. (1) as follows:

w-1
Fy(k) def { Z se(n +m)e”womky) (30)
m=0
where ¢ is an imaginary unit, & € {0,1,---, W — 1},
and wy wef 27 /W. From the above equation, we obtain
periodogram Sy (k) based on the numerical solution of
Eq. (1) as follows:

def 1

See(k) = W|Fe(k)|2- (31)

3.2.2 A Periodogram Based on an MVE

Correlation function rg,(m) of s¢(n) and s,(n) is de-
fined by

rop (M) Lef ’}LHOIO<E[S[(H)SU(H +m)]). (32)
The right-hand side of Eq. (32) is derived from Eq. (35)
described in Section 3.2.3. From Eq. (32), the power
spectrum of s¢(n) based on the MVE of Eq. (1), See(k),
is computed by the following equation for v = ¢:
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w-1

Sew(k) = ro(m)ewomk, (33)

m=0
For v # /£, the above equation denotes the cross power
spectrum of s¢(n) and s,(n) [10].

3.2.3 The MVE of the Correlation Function

The right-hand side of Eq. (32) is derived in this section.
Consider the following simultaneous equations of Egs.
(7) and (26):

E[S,,(n + 1)] E[sy(n)]
Elg1(s(n + 1))] .| Elgi(s(n))] .
. - Az/ : + Bu7
Elgn(s(n+1))] Elon(s(n))]
where
0 Cu;l e CU;N Cu;0¢0
4 e 0 an - aiy B o aio®o
6 az.v1 - a]\.fN GN;)%

Let &g, (m;n) be

E[s¢(n)s,(n 4+ m)]

& ( ) def E[Sl’, (n)¢1 (77’ + TT[)]
wlmin) = .

E[Sg(n)qﬁ].v(n +m)]

By replacing g;(s(n)) with s¢(n) in Eq. (A-13) in Ap-
pendix C, we obtain the following equation:

Bo(m+ 1) = Ay (min) + Blse ()] B, (34)
To eliminate the effect of the initial value of Eq. (1)
and to derive the power spectrum even when Eq. (34)
oscillates T, consider &, (m) i (o, (m;n)). We

obtain @&, (m) from the limit of the time average of Eq.
(34) for n — oo as follows:

&, (m+ 1) = Aye, (m) + E*[s/]B,,. (35)

By computing the above equation for m = 0,1,2,---
step by step, we can obtain the right-hand side of Eq.
(32). The initial value of the above equation, @, (0), is
derived in Appendix D.1.

3.3 Moments for Continuous-time Systems

This section shows the moments of s,(¢) in Eq. (8) in
the same manner as in Sect. 3.1 under the following
assumpiton:

Assumption 3: Equation (13), which is an MVE of
Eq. (8), has a unique equilibrium point, and it does not
diverge. That is, VA; # 0, and VRe[A;] <0 [8].

3.3.1 Moments Based on a Numerical Solution

Moment ((s;(t)*)) and covariance ((s;(t)s,(t))) are de-
rived based on a numerical solution by solving Eq. (8)
numerically. Here, ((-)) is a finite time average, and it
is defined for continuous variable z(t) as follows:

() % 2 /me(wr)dr (36)

Tmax 0

The variance and correlation coefficient are derived in
the same manner as in Egs. (22) and (23).

3.3.2 Moments Based on an MVE

Let (x(t)) be the infinite-time average of continuous
variable z(t) as follows:

o . 1 *Tmax
() ¥ lim / x(t + 7)dr. (37)
Tmax 0 Tmax J(

Appendix B.2 shows that % lim (x(t)) is equal to
equilibrium point #* in Eq. (13). Thus, if Assumption
3 holds, A™" exists [8], and & is expressed by

*

; —~A"'B. (38)
Let us expand E[s,(t)] and E[se(t)s, (t)] as follows:
N
Else(t)] =Y _ e Elo;(s(1))], (39)
=0
N
Else(t)s, ()] = D vy Elg; (s(1))]- (40)
j=0

Because E[¢;(s)] is a constant at the equilibrium point,
Egs. (39) and (40) show that E[s,(t)] and E[se(t)s,(t)]
are also constants at the equilibrium point. Let each
constant be E*[p;(s)], E*[s¢], and E*[sys,], respec-
tively. From Egs. (38) through (40), moment F[s] o
tlim (E[s¢(t)*]) for k = 1,2 and covariance E[sgs,] &ef
tlim (E[s¢(t)s,(t)]) are obtained based on the MVE of

Eq. (13) by using the following equations:

E[Sg] = E*[Sg]

N
7=0

Elsgs,] = E*[ss,]
N
= 0 B [4(s)). (42)
=0

Here, E*[¢;(s)] is an element of &*. The variance and
correlation coeflicient are obtained in the same manner

as in Egs. (22) and (23).



3.4 Power Spectra for Continuous-time Systems

The power spectrum of sy(¢) in Eq. (8) is derived in
this section, assuming that Assumption 3 holds.

3.4.1 A Periodogram Based on a Numerical Solution

Let s¢(0), se(At), s¢(2At), --- be a sequence obtained
by solving Eq. (8) numerically and sampling solution
se(t) at periodic intervals At. By rewriting sg(nAt)
as s¢(n) and applying s;(n) to Egs. (30) and (31), we
can derive periodogram Sy (k), as an estimation of the
power spectrum of sy(t) based on a numerical solution.

3.4.2 A Periodogram Based on an MVE

Correlation function 74, (7) of s,(t) and s, (t) is defined
by the following equation:

rou (1) % lim (E[se(£)s0 (¢ + 7). (43)

t—oo

The right-hand side of the above equation is derived
from Eq. (47) in Sect. 3.4.3. Let 74,(0), 7o (At),
7o, (2At), - - - be a sequence obtained by sampling r, (7)
at periodic intervals At. Let us rewrite 7y, (mAt) as
rep(m) and apply e, (m) to Eq. (33). Then we obtain
periodgram Sys(k) based on an MVE Tf,

3.4.3 The MVE of the Correlation Function
The right-hand side of Eq. (43) is derived in this section.

First, let us expand E[s,(t)s,(t + 7)] by using Eq. (39)
as follows:

N
Blsa(®)s,(t+7)] = Elso(®)S iy (st + 7))
j=0
= 77V;0¢0E[5f (t)]

N
£ g Else()0,(s(t + 7))

N
= 77u:O¢OE[SZ(t)]+Z771/;3':%4(7_; t), (44)
j=1
where
Else(t)¢1(s(t +7))]
To(T3t) def :

Else(t)on (s(t + 7))

Next, let us derive &;(7;¢t). From the linearity of
E[], the following equation holds:

“Although we can obtain the power spectrum by deriv-
ing the Fourier transform of Eq. (43) analytically, sequence
r¢,(m) obtained by sampling 7, (7) is used here because of
the restriction in computing time.
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dE[se(t)ps(s(t + 7))]/dT = El[se(t)de;(s(t + 7)) /dT].

Thus, we obtain the following equation for 7 > 0 by
replacing ge(s(t + 7)) with s.(¢) in Eq. (A-13) in Ap-
pendix C:

da@e(r;t)/dr = Aze(7t) + E[se(t)] B.

By solving the above equation, we obtain the following
equation [8]:

&o(1;t) = Mdiag[e|M &(0;t)
+Mdiag[\; ! (1) M ' E[s(t)] B. (45)

Let us consider the time average of the above equa-
tion at the limit as ¢ tends to co T. Then we obtain the
following equation:

x,(1) = Mdiag[e® | M~ a,(0)
+Mdiag\; (e —1)]M ' E*[s,]B,  (46)
where  Z4(7) & tlim (Te(T31)). By replacing
tlim (E[se(t)s, (t + 1)]) with (1), tlim (xe(T3t)) with
Zo(7), and tlim (E[se(t)]) with E*[s,] in the time av-

erage of Eq. (44) for t — o0, we obtain correlation
function 7y, (7) as follows:

N
ron(T) = oo B [se] + > muyde (7). (47)
j=1

Initial value @,(0) of the above equation is derived in
Appendix D.2.

4. Performance Evaluation

To evaluate the accuracy of the MVEs for continuous-
time systems described in Eq. (13), the statistical prop-
erties, such as the mean, standard deviation, and peri-
odogram, of each variable in the following Lorenz equa-
tions [11] were investigated:

$1 = a1(—s1 + s2),
52 = 81(042 — 83) — So, (48)

53 = 5182 — (353,

where (ag,as,a3) = (10,28,8/3). The attractor is
shown in Fig. 2. Figures 3 through 6 show the statistical
properties of Lorenz equations derived based on MVEs
(see Sects. 3.3.2 and 3.4.2) for various values of Ny,
where Ny, for £ = 1,2, 3 denotes the degree of the Fourier
series (see Appendix A), (51, 382,33) = (—25,—25,0),
(T, T>,T3) = (50,50,50), and W = 512. To evaluate
the accuracy of the statistical properites derived based
on the MVE, those based on the numerical solution of
Eq. (48) (see Sects. 3.3.1 and 3.4.1) are also shown in
these figures (indicated "Num.” on the abscissa axis).
From these figures, the mean, standard deviation,
and periodogram based on the MVE approach to those
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Fig.3 Mean and standard deviation of Lorenz equations.

based on the numerical solutions as N, increases. If As-
sumption 1 holds, that is, the Fourier series converges as
Ny increases, the statistical properties converge to the
true values as Ny increases. We can also see the differ-
ence between the stochastic motions in s; and s, and
the deterministic motion in s3 from the periodograms.
Thus, an MVE can contain statistical properties, such
as the mean, standard deviation, and periodogram, of
a non-linear equation.

Although we can derive the statistical properties
of a non-linear equation based on an MVE, this does
not mean that the MVE always approximates the non-
linear equation itself. To show that MVEs can be an
approximation of non-linear equations, the statistical
properties of a combination of the following logistic
equations [11] were evaluated by using a combination
of their MVEs:

su(n+1) = fu(sw(n))
Lef apsy(n)(1 —se(n)) for £=1,2,

where a; = 3.8 and as = 3.9. Consider the following
discrete-time non-linear system:

s(n+1) = f(s(n)), (49)

Fig.4 Periodograms of Lorenz equations (s; ).

4001

Power

2001

Fig.5 Periodograms of Lorenz equations (s2 ).

N Num.

Fig.6 Periodograms of Lorenz equations (s3 ).

which is constructed by connecting the above two lo-
gistic equations as shown in Eq. (14) and Fig. 1, where

defe

siu(n) sm1(n), snz(n)),
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su(n+1) = fu(su(n))
= CSH(TL),

Cd:cf[l—c c }

c 1—c

That is, s1(n) and sz(n) are independent when ¢ = 0,
and s1(n) and so(n) affect each other when ¢ # 0.
Based on Sects. 3.1.2 and 3.2.2, the statistical
properties, such as the means, standard deviations, cor-
relation coefficients, and periodograms, of si(n) and
s2(n) in Eq. (49) were evaluated using MVEs, which
are constructed as shown in Sect. 2.3 from the MVEs of
i1, fre, and fy. The statistical properties are shown
in Figs. 7 through 9 (labeled "MVE” on the abscissa
axis), where W =512, Ty = 1, §, = 0, and N, = 16 for
¢ =1,2. The periodograms for ¢ = 0 were multiplied by
3, those for ¢ = 0.05 were multiplied by 2, and those for
¢ = 0.1 were divided by 40 in order to arrange them in
the same figures. To evaluate the accuracy of the MVE
approach, the statistical properties derived based on
the numerical solution of Eq. (49) were also evaluated
according to Sects. 3.1.1 and 3.2.1, and they are shown
in each figure (labeled "Num.” on the abscissa axis).
As shown in the figures, the change in ¢ was re-
flected both in the statistical properties obtained based
on MVEs and in those obtained based on numerical so-
lutions. That is, the means and standard deviations
became equal, the correlation coefficients changed from
0 to —1, and the periodograms became line spectra,
when the value of ¢ changed from 0 to 0.1. These results
show that the statistical properties of a combination of
non-linear equations are expressed by using a combina-
tion of MVEs of these non-linear equations. Therefore,
we can conclude that MVEs are an approximation of
non-linear equations in statistical measurements.

5. Conclusion

Moment vector equations (MVEs) can be used to ap-
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(s2).

proximate and analyze non-linear equations. We can
not only analyze the statistical properties, such as the
mean, variance, covariance, and power spectrum, of
non-linear equations based on MVEs but also express
a combination of non-linear equations by using a com-
bination of MVEs of these equations. Evaluation of
the statistical properties of Lorenz equations and those
of a combination of logistic equations showed that we
can analyze the statistical properties of these equations
based on MVEs and that we can use MVEs as an ap-
proximation of multi-dimensional non-linear discrete-
and continuous-time equations in statistical measure-
ments. Because MVEs can be used to approximate
non-linear systems and MVEs are linear, it is expect
that we can easily perform stability analysis and con-
trol various non-linear systems. I will report on these
items in the near future.
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Appendix A: The Basis of MVEs

The Fourier series expansion of function g(s) with re-

spect to s def Y(s1,--+,sr) € 8 is defined by [12]

g9(s) = Y h(k)K(s.k). (A1)

keZ
hk) < /Sg(s)K(s,k)ds, (A-2)
where k < t(ky, - k1), Z Y (k0 < K <

Ny for 1 < ¢ < L}, h(k)s are Fourier coeflicients,
and {K(s,k)} is an orthogonal basis defined by the
product of one dimensional orthogonal basis Ky(s, k)
as follows:

L
K(s.k) = T Kelse, ke). (A-3)
/=1

Let ¢;(s) be the basis of the MVE defined by

def

¢1(3) = K(SJ{?), (A4)

where the relationship between i and k € Z is obtained
by the following equation:

L L
i=> ke [[ No- (A-5)
=1 v=(+1
Dimension N of Matrix A is obtained as follows:
L
N=][®Ve+1) -1
=1

Let L(s,k) be an orthonormal basis for s € [3, 3+
T] defined by [12]:

L(s k) = \/21@;1]3(25;5 “ k), (A-6)

where P(x,k) is the Legendre polynomial for z €
[—1,1] defined by

P(z,0) = 1

P(z,1) ==z

P(z,2) = (322 —1)/2,
P(x,3) = (52° — 32)/2,

In Sect. 4, Ko¢(ss, ke) is set to L(se, ke) for VE.

Appendix B: The Average of the Moment
Vector

Under Assumptions 2 and 3, although Egs. (7) and (13)
have a unique equilibrium point and do not diverge,

the moment vector often oscillates. To derive moments
from the equilibrium point even when the moment vec-
tor oscillates and to eliminate the effect of the initial
value of the moment vector, the relationship between
the time average of the moment vector and the equilib-
rium point is derived in this section.

B.1 The Average for Discrete-time Systems

Let &* be the equilibrium point of x(n) in Eq. (7).
When Assumption 2 holds, VA; # 1, and (I — A)~!
exists. Thus, we obtain x* as follows [8]:

"= (I—-A"'B.
The solution of &(n) is expressed by [8]

xz(n) = MA"M ' (x(0) —2*) + x*. (A-7)
From the above equation and Assumption 2, time av-
erage & is obtained as follows:

z Y lim (x(n))

= M(n1LH;C<A">)M_1(w(O) —z*) +z*

=z (A-8)

B.2 The Average for Continuous-time Systems

Let «* be the equilibrium point of x(t) in Eq. (13).
When Assumption 3 holds, A™! exists, and &* is ex-
pressed by the following equation [8]:

z*=-A"'B. (A-9)
The solution to Eq. (13) is as follows [8]:

x(t) = Mdiagle™' | M 'z,

+Mdiag\; (et — DM T'B. (A 10)

By using Egs. (A-9) and (A-10), we obtain time aver-
age & as follows:

z < lim (x(t))

t—oo

= lim
t, Tmax—00 Tmax

1 1
+M diag| / re/\i(t-’_T)dT - / Tclf]M—HB)

(2 (2

(M diag] / AN A M

= —Mdiag[\;'|]M'B
- —A'B
= z*. (A-11)

Appendix C: The MVE of the Correlation

Function

Consider function g,(s) and basis {h;(s)} with respect
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to vector variable s. For convenience, let us use the fol-
lowing abbreviations both for continuous- and discrete-
time systems:

s s(n) or s(t+71),

hi € hi(s(n)) or hi(s(t+ 7)),

B hi(s(n+1)) or dhi(s(t+ 7))/dr,

def
ge = ge(s(n)) or ge(s(t+7)).

In this section, correlation function E[geh}] is derived.
When Assumption 1 holds, we obtain the following
equation both for continuous- and discrete-time sys-
tems:

N
E[h;ls] = Zaijh]‘ + Ei(s). (A 12)
j=0

Note that hg is a constant. Assuming that E[s;(s)] =0
in Eq. (A-12), we can expand E[g,h}] as follows:

Elgehl) = //gghgp(hg,s)dh;ds
= /gg/hgp(hﬂs)dh;p(s)ds
= /ggE[hﬂs]p(s)ds

N
/gé(z a;;h;)p(s)ds
j=0

N
— Z al—jE[gghj] + aithE[gg].

J=1

Therefore, using coefficient matrix A, the MVE of cor-
relation function E[gsh}] is expressed as follows:

Elgeht] El[geh]
: =A : + Elgi]
Elgehn]

aioho
: (A-13)
Elgeh'y] anoho

Appendix D: The Initial Value of the Correla-
tion Function

Initial values of Egs. (35) and (47) are derived in this
section.

D.1 Discrete-time Systems
We obtain the following equation by expanding

Els¢(n + 1)¢i(s(n + 1))] in a series with respect to
El¢;(s(n))] as follows:

Else(n+ 1)¢i(s(n +1))] = E[fe(s(n))d:(f(s(n)))]
N
- Z&:ijEWj(S(n))].
j=0
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By using the above equation, Eq. (29), and Z(n) defined
in Sect. 2.1, ¢, (0;n + 1) can be expressed by

&0, (050 + 1) = B (n), (A-14)
where égu is defined by

Cfu;O Cly;l te CZV:N
qof | o0 Senn o Sean

Eenvo Eont NN

Here, (p;j is a coefficient used in Eq. (29). Let " be
the equilibrium point of &(n). Because lim (z(n)) =

2" holds from Appendix B.1, we obtain the initial val-
ues of Eq. (35), &, (0), by the following equation:

20,(0) = B " (A-15)

D.2  Continuous-time Systems

By expanding F[s¢(t)¢;(s(t))] in a Fourier series with
respect to E[¢;(s(t))], we obtain

N
Else(t)di(s(t)] = Y _ i Elo;(s(1))):
j=0
Thus, &,(0;t) is obtained by
20(0;t) = Epz(t),

where Z(t) def “(Elpo(s(t))], -, Elpn(s(t))]) and

S0 Sen 0 &N

2| : : (A-16)
Senvo §eNt §eNN

Let #* & “(¢o."x*) and @(t) Lef tlg&(i:(t)) From

Appendix B.2, z(t) = &*. Therefore, we can obtain
the initial values of Eq. (47), &¢(0), by the following
equation:
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