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There is a need to address high-dimensional nonlin-
ear systems in various ¯elds, such as pattern recogni-
tion, clustering, control, and analysis. Solving nonlin-
ear high-dimensional problems requires reducing the di-
mension of the state space. However, dimension reduc-
tion for arbitrary high-dimensional nonlinear systems
is a very di±cult problem.

Various methods have thus been developed for
solving restricted types of problems. Nonlinear prin-
cipal component analysis (PCA), which uses nonlin-
ear axes [1], [2], can extract nonlinear relationships in
high-dimensional data and express the data in a low-
dimensional space more e®ectively than linear PCA.
A basis function is important for e®ectively expressing
high-dimensional data in a low-dimensional space. A
radial basis function has attracted much interest be-
cause it can be smoothly modi¯ed by adjusting its pa-
rameters [3]. In the Laplacian approach, nearby sam-
ples are connected on the basis of the state space ge-
ometry using the graph Laplacian, and basis elements
are set to the eigen vectors of the Laplacian [4], [5].

However, the low-dimensional model is often in-
complete because the data do not always cover all the

dynamics of the target system. For example, if the tar-
get system has multiple steady states and some steady
states rarely appear, the data obtained from the target
system may not contain all the steady states.

This problem can be avoided by using analytical
model reduction. The high-dimensional state is reduced
analytically by extracting the phase dynamics of the
state to analyze various oscillations of the state [6].
Center-manifold reduction can be used for analyzing
the change in the state in the neighborhood of a bifur-
cation point [7], which is di±cult to do using numeri-
cal analysis. While perturbation analysis and asymp-
totic analysis, which are widely used and theoretically
supported, are e®ective for solving various nonlinear
problems [8], [9], they cannot always be applied to ar-
bitrary systems. Moreover, approximate solutions ob-
tained with these methods are rather complex, so they
cannot easily be used to construct everyday systems.

Eigen analysis of the Frobenius-Perron operator is
used to derive the probability density function (pdf)
representing the macroscopic and statistical properties
of the system [10], [11]. Application of the Galerkin ap-
proximation to the Frobenius-Perron operator enables
the pdfs of nonlinear systems to be derived with high
accuracy. However, the dimension of the coe±cient vec-
tor used for the Galerkin approximation increases ge-
ometrically with the dimension for a given accuracy.
This \curse of dimensionality" problem prevents using
this method for analyzing a high-dimensional nonlinear
system.

Eigen analysis of the moment vector equation
(MVE) is used to investigate the macroscopic and sta-
tistical properties of nonlinear systems [12], [13]. How-
ever, it is also a®ected by the curse of dimensional-
ity. A many-body system can be expressed using a
Boltzmann equation [14] or a nonlinear Fokker-Planck
equation [15] if the elements in the system are identical
and indistinguishable. Although the MVE has been ex-
panded for use in analyzing a many-body system [13], it
is still di±cult to use the MVE for a high-dimensional
system if it is not expressed as a many-body system.

The MVE of a space embedded equation (SEE)
presented in this paper is applied to this problem. The
SEE can express an arbitrary multi-dimensional tar-
get system as a low-dimensional equation. The pdfs of
arbitrary elements in the target nonlinear system are
derived without a reduction in accuracy due to dimen-
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sion reduction. Moreover, the dynamics of the system
are expressed by the eigenvalues of the MVE, making it
possible to identify multiple steady states that cannot
be identi¯ed using numerical simulation.

In Sect. 2, analysis using the MVE is summarized.
Section 3 describes the method for expressing a multi-
dimensional system as a low-dimensional SEE. In Sect.
4, it is shown that the MVE of the SEE and its eigen
analysis can be used to derive the properties of multi-
dimensional chaotic systems. The key points are sum-
marized and areas for future work are mentioned in
Sect. 5.

2.1 Moment Vector Equation for Nonlinear System

Consider the problem of deriving the dynamics of a
nonlinear system using an equation of the system given
in advance. Although numerical simulation is power-
ful, all the dynamics of the system cannot always be
identi¯ed [13]. The moment vector equation (MVE)
was developed to identify thy dynamics that cannot be
identi¯ed using numerical simulation [12], [13].

Consider the following multi-dimensional discrete-
time nonlinear system:

t+1 = ( t); (1)

where t
def
= (s1;t; ¢ ¢ ¢ ; sds;t)

T 2 is the state of di-

mension ds, (¢)
def
= (f1(¢); ¢ ¢ ¢ ; fds

(¢))T is a determinis-
tic or stochastic function, subscript t denotes a discrete

time,
def
= f tjsmind < sd;t < s

maxd; 1 · d · dsg is
the domain of de¯nition, and superscript T denotes a
transposition.

Let fÃi(¢)g be an orthonormal basis and Ã0(¢) be
constant Ã0 as de¯ned in Appendix A. To derive the
MVE for the nonlinear system in Eq. (1), we introduce
the following assumption with respect to Eq. (1).

We can expand E[Ãi( t+1)j t] in a
Fourier series:

E[Ãi( t+1)j t] =

NX

j=0

aijÃj( t) + "i( t); (2)

where E[¢] is the mathematical expectation, "i( t) is
the residual, and N is the degree of expansion.

Using Eq. (2), we can expand E[Ãi( t+1)]:

E[Ãi( t+1)] =

Z

p( t)(
NX

j=0

aijÃj( t) + "i( t))d t

=

NX

j=0

aijE[Ãj( t)] + E["i( t)]; (3)

where p(¢) denotes a probability density function.
When Eq. (1) is deterministic, aij is derived from Eq.
(A¢ 2) as

aij =

Z

Ãi( ( ))Ã¤
j ( )d ; (4)

where superscript ¤ denotes a complex conjugate. If we
assume that E["i( t)] = 0, Eq. (3) can be expressed as

t+1 = A t; (5)

where ( t)
def
= (Ã0( t); ¢ ¢ ¢ ; ÃN ( t))

T, t
def
= E[ ( t)]

is referred to as the moment vector, and A is the (N +
1)£ (N + 1) matrix de¯ned by

A
def
= [aij j0 · i · N; 0 · j · N ]:

Equation (5) is referred to as the MVE.

2.2 In¯nite-time Average of Moment Vector Corre-
sponding to Multiple Equilibrium Points

Let h ti be the in¯nite-time average of t de¯ned by

h ti
def
= lim

T!1
T¡1

T¡1X

¿=0

t+¿ :

The following assumption is introduced for convenience
of analysis to derive the in¯nite-time average of moment
vector t.

t does not diverge for t ! 1.

Let ¸i be the ith eigenvalue of matrix A in Eq. (5),

i be the ith eigenvector of matrix A (0 · i · N), and
¸i and i be arranged by the value of ¸i so that

(a) ¸0 = 1 and e00 6= 0,

(b) ¸i = 1 and ei0 = 0 for 0 < i · i1,

(c) k¸ik = 1, ¸i 6= 1, and ei0 = 0 for i1 < i · i2,

(d) k¸ik < 1 and ei0 = 0 for i2 < i · N .

Here, k¸ik · 1 holds for 8i from Assumption 2, and ½0;t
is constant because Ã0(¢) is constant from the de¯nition
of fÃi(¢)g. Thus, there is at least one eigenvalue that
is equal to one, e00 6= 0 holds in (a), and ei0 = 0 holds
in (b), (c), and (d).y

Because the MVE in Eq. (5) is linear, h 1i is equal
to equilibrium point e such that e = A e even if

t oscillates at t = 1 [12]. Equilibrium point e is
expressed as a weighted sum of eigenvector i with ¸i =
1. Therefore, h 1i can be expressed as

h 1i = (Ã0=e00)

i1X

i=0

wi i: (6)

The (Ã0=e00) is set so that the ¯rst element in h 1i
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equals Ã0, and wi is a given weight (w0 is always set to
unity). When there are multiple eigenvalues that take a
value of 1, h 1i takes various values as determined by
the w1, ¢ ¢ ¢ , wi1 that are given corresponding to initial
state 0.

The above equation contains information about
the statistical properties not only when t converges
but also when t oscillates. A method for deriving
the probability density function (pdf) of t will be pre-
sented in the next section.

2.3 Probability Density Function Based on Moment
Vector

The pdf of t of the nonlinear system in Eq. (1) in a
steady state is derived using h 1i.

Consider the Fourier series expansion of ±( ¡ ^).

±( ¡ ^) »=

NX

i=0

®iÃi( ); (7)

where ^ is a given constant vector, and Fourier coe±-
cient ®i is derived using

®i =

Z

±( ¡ ^)Ã¤
i( )d

= Ã¤
i(^):

From this, we obtain

±( ¡ ^) »= ¤T(^) ( ): (8)

Using this equation, we can approximate 8p( ) as

p( ) =

Z

p(^)±(^ ¡ )d^

»=
¤T( )E[ ( )]:

The pdf of in a steady state is thus obtained by
replacing E[ ( )] with h 1i:

p( ) = h 1iT ¤( ): (9)

Because this equation is an approximation, the p( ) is
not always greater than 0 due to the approximation
error, although

R
p( )d = 1 always holds.

2.4 Structure Analysis Based on Eigenvalue and
Eigenvector of Moment Vector Equation

A structure analysis based on eigen analysis is pre-
sented in this section. As shown in Eq. (9), the av-
erage pdf in a steady state is determined by h 1i. The
eigenvalues and eigenvectors of coe±cient matrix A of
the MVE in Eq. (5) determine the dynamics in the
moment vector. The macroscopic structure and mech-
anism of the system are thus obtained by eigen analysis
of the coe±cient matrix.

Let ¸i be the ith eigenvalue of matrix A in Eq.

(5) and i be the corresponding eigenvector. When the
initial value of the moment vector is given by

0 = »0 0 + »1 1+; ¢ ¢ ¢ ;+»N N ;

t is obtained as

t = »0¸
t
0 0 + »1¸

t
1 1+; ¢ ¢ ¢ ;+»N¸t

N N : (10)

Here, the coe±cient vector
def
= (»0; ¢ ¢ ¢ ; »N )T is ob-

tained for a given 0 as

= M¡1
0; (11)

using principal axis matrix M
def
= [ 0; ¢ ¢ ¢ ; N ], and 0

is obtained from its de¯nition (
def
= E( ( )) using

given initial pdf p0( ).
From Assumption 2, ¸0 =; ¢ ¢ ¢ ;= ¸i1 = 1. The

in¯nite-time average of Eq. (10) thus converges to

h 1i = »0 0+; ¢ ¢ ¢ ;+»i1 i1 : (12)

Therefore, h 1i is derived as in Eq. (6) using initial
pdf p0( ) and 0; ¢ ¢ ¢ ; i1 to compute the average pdf
in a steady state.

Therefore, the eigenvalues and eigenvectors can be
used to ¯nd the various properties that cannot be found
using conventional analysis methods [12], [13] from the
viewpoint of system structure.

The space embedded equation (SEE) was developed for
expressing an arbitrary multi-dimensional target sys-
tem as a low-dimensional equation to solve the curse of
dimensionality. In this section, the SEE is presented,
and the pdf of the target system is derived using the
MVE of the SEE.

3.1 Embedding from Multi-dimensional Discrete
Space to Low-dimensional Discrete Space

Let
def
= (¹1; ¢ ¢ ¢ ; ¹d¹)

T

2 be a state vector in

a d¹-dimensional discrete space, ¹d 2 D¹, D¹
def
=

f0; 1; 2; ¢ ¢ ¢ ; 2B ¡ 1g,
def
= D¹£; ¢ ¢ ¢ ;£D¹, and B be

the bit length when ¹d is expressed as a binary number.
Let ¾ 2 D¾ be a state variable in a one-dimensional dis-

crete space, D¾
def
= f0; 1; 2; ¢ ¢ ¢ ; 2d¹B ¡ 1g.

First, a mapping from the d¹-dimensional discrete

space to the one-dimensional discrete space, ~h : !
D¾, is de¯ned. Let bd;j 2 f0; 1g be the jth bit when
¹d is expressed as a binary number, bd;B¡1 be the most
signi¯cant bit (MSB), and bd;0 be the least signi¯cant
bit (LSB). Then, ¹d can be expressed as

¹d = bd;02
0 + bd;12

1 + bd;22
2+; ¢ ¢ ¢ ;+bd;B¡12

B¡1: (13)

Two methods were developed to obtain ¾ from bd;j .
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One is fair bit allocation (FBA), which assigns the sig-
ni¯cant bits of ¹d for 8d to those of ¾ and the less
signi¯cant bits to those of ¾, as described in

¾ = b1;02
0 + b1;12

d¹+0+; ¢ ¢ ¢ ;+b1;B¡12
(B¡1)d¹+0

+ b2;02
1 + b2;12

d¹+1+; ¢ ¢ ¢ ;+b2;B¡12
(B¡1)d¹+1

: (14)

+ bd¹;02
d¹¡1 + bd¹;12

d¹+d¹¡1+; ¢ ¢ ¢ ;

+ bd¹;B¡12
(B¡1)d¹+d¹¡1:

The other is prior bit allocation (PBA), which assigns
the bits of ¹d to the signi¯cant bits of ¾ in the order
¹µ(d¹), ¹µ(d¹¡1), ¢ ¢ ¢ , ¹µ(1). Here, µ(d) 2 f1; 2; ¢ ¢ ¢ ; d¹g
denotes a priority level, and the µ(d)th element of
has a dth priority level. That is, ¹µ(1) has the lowest
priority level, and ¹µ(d¹) has the highest priority level.
The PBA is de¯ned as

¾ = bµ(1);02
0 + bµ(2);02

B+0+; ¢ ¢ ¢ ;+bµ(d¹);02
(d¹¡1)B+0

+ bµ(1);12
1 + bµ(2);12

B+1+; ¢ ¢ ¢ ;+bµ(d¹);12
(d¹¡1)B+1

: (15)

+ bµ(1);B¡12
B¡1 + bµ(2);B¡12

B+B¡1+; ¢ ¢ ¢ ;

+ bµ(d¹);B¡12
(d¹¡1)B+B¡1:

The number of values that takes in is equal
to the number of values that ¾ takes in D¾. If 6= 0,
~h( ) 6= ~h( 0) for 8 and 8 0 2 . Thus, ~h is a bijec-
tion and is an embeddingy from to one-dimensional

discrete space. An example of ~h that maps a two-
dimensional discrete variable, , to a one-dimensional
discrete variable, ¾, is shown in Fig. 1. Here, ¹2 has
the highest priority level.

Mapping ~h is used to de¯ne a mapping from a
dx-dimensional discrete variable to a ds-dimensional

discrete variable. Let ~
def
= (~x1; ¢ ¢ ¢ ; ~xdx

)
T

, ~xd 2

f0; 1; 2; ¢ ¢ ¢ ; 2B ¡ 1g, ~
def
= (~s1; ¢ ¢ ¢ ; ~sds)

T

, ~sd 2
f0; 1; 2; ¢ ¢ ¢ ; 2d¹B ¡ 1g, ds < dx, mod(dx; ds) = 0, and

d¹
def
= dx=ds. Here, mod(dx; ds) is the remainder of

division of dx by ds. Then, ~si is obtained as ~si =
~h((~x(i¡1)d¹+1; ¢ ¢ ¢ ; ~xid¹

)
T

). The mapping, ~ : ~ ! ~,

is thus a bijection and is described as

~ = ~(~)
def
= (~h((~x1; ¢ ¢ ¢ ; ~xd¹

)
T

); ~h((~xd¹+1; ¢ ¢ ¢ ; ~x2d¹
)
T

); ¢ ¢ ¢ ;

~h((~x(ds¡1)d¹+1; ¢ ¢ ¢ ; ~xdsd¹)
T

))
T

: (16)
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3.2 Low-dimensional Space Embedded Equation of
Continuous Multi-dimensional System

Let
def
= (x1; ¢ ¢ ¢ ; xdx

)
T

2 be the dx-dimensional

continuous state,
def
= f jx

mind · xd · x
maxd; 1 ·

d · dxg,
def
= (s1; ¢ ¢ ¢ ; sds

)
T

2 be the ds-

dimensional continuous state,
def
= f js

mind · sd ·
s
maxd; 1 · d · dsg, ds < dx, and mod(dx; ds) = 0.

Mapping : ! maps state in a multi-
dimensional continuous space to state in a low-

dimensional continuous space and is de¯ned as ( )
def
=

¡1
s (~( x( ))). Here, x : ! ~ is a mapping from
to discrete state ~, and s : ! ~ is a mapping from
to discrete state ~. State is thus expressed as

= ( ): (17)

Let the target multi-dimensional system be

t+1 = x( t): (18)

Using Eq. (17), we can transform the target system into
a low-dimensional SEE described by

t+1 = ( t)
def
= ( x(

¡1( t))): (19)

Consider the case in which dx = 6, ds = 2, and
µ(3) = 2 for example. In this case, s1 represents x1,
x2, and x3, and s2 represents x4, x5, and x6. The vari-
ables with the highest priority level are x2 and x5, and
their dynamics are mainly re°ected on those in s1 and
s2, respectively. Consider the two-dimensional globally
coupled logistic map (2D-GCM) de¯ned in Sect. 4.1 as
an another example. The elements of the function are
shown in Figs. 2 and 3. The one-dimensional SEEs of
the two-dimensional coupled logistic map derived us-
ing PBA and FBA are shown in Fig. 4. PBA gave the
highest priority level to x1, so x2 is embedded in x1, as
shown in the ¯gure.

3.3 Pdf of Multi-dimensional State Based on Low-
dimensional Space Embedded Equation

The pdf of the target multi-dimensional system in Eq.
(18) can be derived using the SEE in Eq. (19). Let
Eq. (5) be the MVE of Eq. (19) and the in¯nite-time
average of t be expressed by Eq. (6). Applying Eq.
(17) to Eq. (9), we obtain

p( ) = h 1i
T ¤( ( )): (20)

The algorithm for deriving the pdf is summarized
as Algorithm 1.

Analysis based on MVE of SEE

(1-1) Set target system in Eq. (18) and derive its SEE
in Eq. (19).

(1-2) Compute matrix A in MVE of Eq. (19).

(1-3) Compute eigenvalues and eigenvectors of matrix
A.

(1-4) If there are multiple eigenvalues with value 1, set
weight wi used for Eq. (6).

(1-5) Compute h 1i using Eq. (6), and compute pdf
using h 1i and Eq. (20).

(1-6) Change weight wi and go back to Step (1-5) if
necessary.

Hereinafter, the MVE of an SEE that uses PBA is ab-
breviated as MVE(PBA). When FBA is used instead of
PBA, it is abbreviated as MVE(FBA). When the SEE
is not used, that is, dx = ds and = ( ) = , the
MVE is referred to as MVE(original).

When MVE(PBA) is used, the dynamics in
the variable with the highest priority level in
x(i¡1)d¹+1; ¢ ¢ ¢ ; xid¹

are re°ected on those in si. The
degree of expansion, N , is thus derived using Eq. (A¢ 6)
as

N =

8
>>>><

>>>>:

dxY

d=1

(Nd + 1)¡ 1 for MVE(original)

dsY

d=1

(Nd + 1)¡ 1 for MVE(PBA):

(21)

Dimension reduction using the SEE has an attractive
feature: the pdfs of arbitrary elements in the target
nonlinear system can be derived without a reduction in
accuracy due to dimension reduction. In other words,
Eq. (21) means that the degree of expansion can be
reduced from N to around N (ds=dx) while maintaining
the accuracy of the variable with the highest priority
level.

Consider an example in which dx = 4, ds = 1, and
µ(4) = 2. In this example, s1 represents x1, x2, x3,
and x4. The variable with the highest priority level is
x2, and its dynamics are mainly re°ected on those in
s1. We can thus analyze the dynamics in x2 in the one-
dimensional space of s1 instead of the four-dimensional
space of x1, ¢ ¢ ¢ , x4. When Nd = 32 for 8d, that is, all
the xd have the same accuracy, the N of MVE(PBA)
is 32 whereas that of MVE(original) is 1,185,920. It
is thus di±cult to use MVE(original) for systems with
more than four dimensions. Thus, MVE(PBA) can be
used to analyze a target system that cannot be analyzed
using MVE(original), and we can obtain pdfs for all the
xd and their joint pdf by executing Algorithm 1 for vari-
ous combinations of µ(d). In contrast, the bits of x1,¢ ¢ ¢ ,
xdx

are fairly assigned to s1,¢ ¢ ¢ , sds
in MVE(FBA).

The accuracies for each state are thus much lower than
those obtained using MVE(PBA). These properties of
MVE(FBA) and MVE(PBA) are evaluated in the next
section.



IEICE TRANS. FUNDAMENTALS, VOL.E96{A, NO.2 FEBRUARY 2013

4.1 E®ect of Degree of Expansion on Accuracy

Consider a globally coupled map (GCM) [17] as the
target system in Eq. (18). The GCM is de¯ned by

t+1 = x( t)
def
= C (n)( t); (22)

where (n)( )
def
= (g

(n)
1 (x1); ¢ ¢ ¢ ; g

(n)
dx

(xdx
))

T

, g
(n)
i (x)

def
=

n
z }| {
gi(gi(¢ ¢ ¢ gi(x) ¢ ¢ ¢ )), gi(x) is a logistic map de¯ned by

gi(xi)
def
= aixi(1¡ xi) [18], and C is a dx £ dx matrix.

In this section, the e®ectiveness of MVE(PBA) for
the dimension reduction described in Sect. 3.3 is evalu-
ated. It is shown that the degree of expansion can be re-
duced from N to around N (ds=dx) by using MVE(PBA)
and that the accuracy of the pdf of the variable with
the highest priority level does not decrease due to di-
mension reduction. Consider a two-dimensional GCM
(2D-GCM) with parameters n = 1, dx = 2, a1 = 3:2,
a2 = 3:9, and C = C1, where C1 is given by

C1
def
=

·
0:9 0:1
0:1 0:9

¸

:

The x1 oscillates periodically with a period of 2 when
x1 and x2 behave independently (i.e., C is an identity
matrix). In contrast, both x1 and x2 for C = C1 show
chaotic dynamics because the strong nonlinearity in x2

with chaotic dynamics a®ects x1, as can be seen in their
pdfs in Fig. 5. It is thus di±cult to analyze the GCM
using conventional methods, which decompose it into
elements and then combine their properties. Therefore,
the GCM is used to evaluate the performance of the
method described in Sect. 3.

First, the e®ect of N , the degree of expansion, on
the pdf of 2D-GCM was evaluated to show that the
accuracy of the pdf increases with N . Figure 6 shows
the e®ect of N on the pdfs of x1 and x2 obtained using
MVE(PBA) with ds = 1. It is obvious, comparing Figs.
5 and 6, that the accuracy increased with N .

Second, the accuracy of the pdf of the variable
with the highest priority level was shown not to de-
crease due to dimension reduction. Figure 7 shows the
e®ect of N on the pdf when MVE(original) was used.
The accuracy of the pdf obtained using MVE(original)
with N = 255 was almost equal to that obtained using
MVE(PBA) with N = 15, as we can see by comparing
Figs. 6 and 7. This means that we can reduce the de-
gree of expansion from N to around N (ds=dx) (ds = 1
and dx = 2) using MVE(PBA) without a reduction in
accuracy of the pdf due to dimension reduction.

To identify the reason for this, the pdfs obtained
using MVE(PBA) and MVE(FBA) for N = 15 and

ds = 1 are plotted in Fig. 8, where all the pdfs ob-
tained using MVE(PBA) are shown while only the pdfs
of xµ(2) (the state with the highest priority level) are
shown in Fig. 6. When MVE(PBA) with µ(1) = 2 and
µ(2) = 1 was used, the dynamics in x1 were mainly
re°ected on those in s1. The accuracy for s1 was thus
substantially proportional to N , and that for x2 was
almost equal to 0. This is illustrated by the plot in
Fig. 8, where the pdf of x1 is similar to that obtained
using MVE(original) with N = 255, as in Fig. 7, al-
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though the pdf of x2 cannot express the dynamics in
x2. When MVE(PBA) with µ(1) = 1 and µ(2) = 2 was
used, the pdf of x2 expressed an approximate pdf for
the same reason. These results show that we can select
an arbitrary element in state and derive the prop-
erties of that element without degrading its accuracy
at the expense of the accuracies of the other elements.
In contrast, when MVE(FBA) was used, the dynamics
in both x1 and x2 were re°ected on those in s1. The
accuracy was thus worse than that of MVE(PBA).

In short, the degree of expansion can be reduced
from N to around N (ds=dx) by using MVE(PBA), and
the accuracy of the pdf of the variable with the highest
priority level is not reduced due to dimension reduction.
Therefore, MVE(PBA) is suitable for analyzing multi-
dimensional systems although we have to repeatedly
execute Algorithm 1 for various combinations of µ(d).

4.2 Multiple Attractors

The 2D-GCM described in the previous section has a
unique attractor. In contrast, there are many systems
in which states starting from di®erent initial values de-
pict di®erent attractors. Multiple attractors can be de-
rived from MVE(PBA). Consider a four-dimensional
GCM (4D-GCM) with parameters n = 2, dx = 4,
a1 = 3:65, a2 = 3:7, a3 = 3:55, a4 = 3:6; and C = C2

given by

C2
def
=

2

6
6
4

0:9 0:1 0 0
0 0:9 0:1 0
0 0 0:9 0:1
0:1 0 0 0:9

3

7
7
5 :

The parameters were set so that the GCM clearly pro-
vided multiple attractors with di®erent pdfs due to the
initial value of t to con¯rm that eigen analysis of the
MVE can identify multiple steady states.

The pdfs of x1 obtained using numerical simula-
tion are shown in Fig. 9 (labeled \Attractor 1" and
\Attractor 2"). Fortunately, multiple attractors for the

4D-GCMwere obtained by numerical simulation for dif-
ferent initial values of , as shown in Fig. 9, although
it is often di±cult to obtain multiple attractors by nu-
merical simulations [13]. However, it is still di±cult to
determine how many kinds of attractors the system can
provide. Moreover, MVE(original) cannot be used for
systems with more than four dimensions, as discussed in
Sect. 3.3, because N becomes too large. Eigen analysis
of matrix A of the MVE of the SEE is thus a powerful
way to ¯nd multiple attractors for systems with more
than four dimensions even if they are di±cult to ¯nd
using numerical simulation [13].

Set ds = 1 and the highest priority to x1 to investi-
gate the attractors of x1. As shown in Table 1, ¸0 and
¸1 take unity, where { denotes the imaginary unit. This
means that there are two types of pdfs with respect to
x1 and that the shape of the average pdf in a steady
state depends on the initial pdf, as obtained using nu-
merical simulation. The pdfs for N = 32 are shown in
Fig. 10, and they are su±ciently precise to discriminate
the di®erences between them.

The w1 in Eq. (6) is determined so that p( ) in
Eq. (20) is not less than zero for 8 2 . For 4D-
GCM, p( ) ¸ 0 for ¡4:0 · w1 · ¡0:5, and p( ) with
w1 = ¡0:5 shows Attractor 1 and that with ¡4:0 shows
Attractor 2. When ¡4:0 < w1 < ¡0:5, the pdf is a mix-
ture of the pdfs of Attractors 1 and 2, and it is obtained
when there are multiple particles that obey 4D-GCM
independently. The value of w1 corresponds to the ratio
of the number of particles that obey Attractor 1 or 2.
An example pdf for multiple particles is shown in Figs.
9 and 10 (indicated by \Mixture"). In the same manner
as for 4D-GCM, consider the eigenvalues of 2D-GCM
shown in Table 1. Only ¸0 takes unity. This means
that h 1i has a unique value, as in Eq. (6). The aver-
age pdf in a steady state should thus be unique. This
was con¯rmed by numerical simulation using various
initial values of x0. These results show that the num-
ber of attractors and their pdfs that a system provides
can be estimated using eigen analysis of matrix A.

The space embedded equation (SEE) presented in this
paper can be used to express a multi-dimensional target
system as a low-dimensional equation. The problem of
the dimension of the moment vector equation (MVE)
increasing geometrically with the dimension of the tar-
get system can be avoided by using the SEE without
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a reduction in accuracy due to dimension reduction.
Eigen analysis of the MVE is e®ective for identifying
the macroscopic and statistical properties that cannot
be identi¯ed using numerical simulation. Therefore,
the MVE using SEE approach can be applied to multi-
dimensional nonlinear systems to ¯nd various proper-
ties that cannot otherwise be found. It is di±cult to
analyze a very-high-dimensional system using the MVE
of the SEE presented in this paper. This is because the
accuracy of the pdf cannot be maintained due to the
quantization (discretization) errors in mapping and ~h
without increasing calculation time. In other words, it
takes a very long time to derive MVE(PBA) if we try
to maintain the accuracy for a very-high-dimensional
system. Fortunately, it is possible to reduce the er-
rors and improve the accuracy of MVE of SEE by using
ultradiscretization [19] and the Markov partition [20].
Although applying these methods is a challenging task,
they are quite promising for improving the accuracy be-
cause of their attractive features, so this challenge will
be taken up in a future study.



SATOH: SEE FOR NONLINEAR ANALYSIS

An orthonormal basis is summarized in this ap-

pendix. Let h( ) be the Fourier coe±cient,
def
=

(k1; ¢ ¢ ¢ ; kds
)T 2 be the index vector of the Fourier

coe±cient, and be the set of that are used for the
index vectors. The Fourier series expansion for function
f( ) is de¯ned by

f( ) =
X

2

h( )K( ; ); (A¢ 1)

h( )
def
=

Z

f( )K¤( ; )d ; (A¢ 2)

where
def
= (s1; ¢ ¢ ¢ ; sds

)T is the state vector of dimen-

sion ds,
def
= f jsmind · sd · smaxd; 1 · d · dsg is

the domain of the de¯nition of , superscript ¤ denotes
a complex conjugate, fK( ; )g is a multi-dimensional
orthonormal basis, and K( , ) is de¯ned by

K( ; )
def
=

dsY

d=1

Kd(sd; kd): (A¢ 3)

Here, fKd(sd; kd)g is a one-dimensional orthonormal
basis.

Let fÃi(¢)g be a basis the element of which is de-
¯ned by

Ãi( )
def
= K( ; ); (A¢ 4)

where i is the index of the basis. When Zd
def
=

f0; 1; ¢ ¢ ¢ ; Ndg and is given by the Cartesian product
as = Z1 £ Z2£; ¢ ¢ ¢ ;£Zds , the relationship between
and i can be obtained using

i =

dsX

d=1

kd

dsY

d0=d+1

(Nd0 + 1); (A¢ 5)

where Nd is the degree of expansion of sd. Let N be
the degree of expansion of . When Eq. (A¢ 5) holds,
N is expressed by

N =

dsY

d=1

(Nd + 1)¡ 1; (A¢ 6)

where the dimension of the feature space with the basis
is N + 1. The relationship between i and is referred
to as the index table.

The element of the orthonormal basis based on the
complex Fourier series is de¯ned as

Kd(sd; kd)
def
=

8
>>>>>><

>>>>>>:

r
1

Dsd
for kd = 0

r
1

Dsd
exp(¡{kd+1

2 !0d(sd¡smind)) for kd=1; 3; ¢ ¢ ¢
r

1
Dsd

exp({kd2 !0d(sd¡s
mind)) for kd = 2; 4; ¢ ¢ ¢

where { denotes the imaginary unit, !0d
def
= 2¼=Dsd,

and Dsd
def
= s

maxd ¡ s
mind.


