
April 1991 Report No. STAN-CS-91-1389

The AGENT0 Manual

Mark Torrance and Paul Viola

Department of Computer Science

Stanford University

Stanford, California 94305

The AGENT0 Manual

Mark C. Torrance
Program in Symbolic Systems

Stanford University
Stanford, California 94305
torrance@cs.stanford.edu

Paul A. Viola
Artficial Intelligence Laboratory

Massachussets Institute of Technology
Cambridge, Massachussets

viola@ai.mit.edu

April 9, 1991

This document describes an implementation of AOP, an interpreter for pro-
grams written in a language called AGENTO. AGENT0 is a first stab at
a programming language for the paradigm of Agent-Oriented Programming.
It is currently under development at Stanford under the direction of Yoav
Shoham. This implementation is the work of Paul A. Viola of MIT and
Mark C. Torrance of Stanford-

1 Introduction

AOP, Agent Oriented Programming, is a programming paradigm proposed by Professor
Yoav Shoham of Stanford University. It imposes certain constraints on the nature of agents
and of their communication. AGENT0 is a more restrictive language, in which programs
in the spirit of AOP can be written. Both AOP and AGENT0 are described in [l].

This document describes an impIementation of an interpreter for agent programs written
in the AGENT0 language. This implementation purports to be a complete implementation
of the AGENT0 language as defined in Shoham’s paper. This implementation is still under
development, but the most recent released version should be fairly complete and accurately
described by this document.

1

2 Obtaining AGENT0
This implementation of AGENT0 is available for Allegro Common Lisp running on UNIX
workstations maintained at the Stanford Robotics Lab, AKCL running on Sparcstations
maintained by AIR at Stanford, and for Macintosh Computers running Allegro Common
Lisp. The code should be portable to any Common Lisp implementation, although there
may be special purpose applications which run only on one or some of the supported plat-
forms (e.g. a graphical front end in X). Th is manual describes only the main, portable
interpreter/simulator.

Hereafter in this manual, the notation <aO> will refer to the directory in which your
AGENT0 files are stored. You should set up such a directory in a convenient place, and
copy all of the AGENT0 files in’qto it.

If you are a member of the Nobotics group at Stanford, the AGENT0 files are available
in the directory -aop/lisp/aO. You don’t need to copy these; just run them from this
directory. Hereafter, you should use -aop/lisp/aO wherever you see <aO>.

AGENTOis also available on the Andrew File System, a national network-transparent
filesystem, in the directory /af s/ir. stanf ord. edu/users/t/torrance/aop. Copy all files
from this directory into a directory (hereafter <aO>) on your own machine, and change the
variable *sop-load-path* in <aO>/load.lisp to point to the place where you put the
<aO> directory. This pathname should either be absolute for your machine, or relative to ’
the *def ault-pathname-defaults* of Lisp as you start it, which is the pathname of the
directory you are in when you started Lisp.

At the moment, uses a separate parser, Paren, to parse source files. You also need to copy
the files from the directory /af s/ir. Stanford. edu/users/t/torrance/paren to a direc-
tory, usually a sister to <aO>. Change the variable *paren-load-path* in <aO>/load. lisp
to point to the directory where you put the Paren files. Paren will not be used in future
versions of this interpreter.

3 Running AGENT0
To run AGENTO, first start up Common Lisp. The command to do this will depend on
your system, but could be cl, akcl, acl, or clicking on an icon for Allegro Common Lisp on
a R4acintosh.

Next, load the file <aO>/load by typing (load ‘ ‘load’ ’) to Lisp. If you ivere not in
the <aO> directory when you started Lisp, you should type the pathname of that directory
to the load command, as in (load ” aop/lisp/aO/load ’ ‘), which works on Nobotics lab
machines.

2

4 The (sop) function

After you have loaded AOP, calling the (sop) function will start the interpreter’s read-eval-
print loop. The prompt will be <AGENT>, representing the fact that you are “in the context
of” a predefined agent named agent. This agent has no beliefs or commitment rules built
in. It is useful mainly as a place from which to interact with other agents running under the
interpreter.

5 Defining an Agent
Each agent has a distinct name. An agent program includes two files. One, agent-name. aop
contains the AOP program for the agent. The other, agent-name. lsp, contains support
functions written in Lisp which implement the agent’s primitive actions. Currently, all of
these functions should be written to expect one more argument than the arity of their call
as written in commitment rules. This extra argument should come first. It corresponds to
the data structure which holds the agent who is performing the action. This is useful for
implementing private actions which modify the agent’s own beliefs or commitments.

A sample agent named joetriv has been provided in the <aO> directory. You’can examine
the files j oetriv. aop and joetriv. asp to get an idea of the format of this information.
The next section describes how to load an agent such as joetriv into the environment.

6 Loading an Agent
To load both the . aop and the .~sp files into the current environment, say of an agent
named joetriv, type load joetriv to the <AGENT> prompt. You can then type joetriv
to the prompt to “enter” joetriv’s context. The prompt will change to reflect the fact
that you are now within joetriv. This sets the global variable *current-agent* to the
internal data structure associated with joetriv, so that many of the commands understood
by the AGENT0 main loop will function with respect to joetriv. For example, you could
type state (now (alive john)) to assert a fact into joetriv’s beliefs. Or you could type
inform agent ((+ now (* 10 m)) (foo a b)) to send an inform message from joetriv to
agent which says that the proposition (foo a b) becomes true ten minutes from the time
the message is sent.

7 C o m m a n d s

A number of commands are understood by the AGENT0 main loop. These include:

3

q or quit or exit
run

walkor stop
<return>

leave the AOP function
begin asynchronous mode
(run ticks continuously)
return to synchronous mode
on a line by itself,
runs one tick in synchronous mode

now
load <agent>

g o <agent>

print the current time in 24hour format
loads files <agent>. aop
and <agent>. asp
make<agent>the *current -agent*

inform <agent> (TIME PROP) *current -agent * informs <agent >
of <fact>

request <agent> <act> *current-agent* requests <agent>
to perform <act>

beliefs
cmtrules
incoming

bel? (TIME PROP)

list all beliefs of *current-agent*
list all commitment rules of *current-agent*
list all incoming messages of *current-agent*
(to be processed at beginning of next tick)
tells whether *current-agent* believes PROP
is true at TIME
(now can be used as a TIME to indicate
the current time. Functions of now can also
be used, such as (+ now (* 2 m)) for
2 minutes later than the current time)

state (TIME PROP)
clrbels
cmtrule [, , , 1

showmsgs turn on display of messages as they are sent
noshowmsgs turn off display of messages as they are sent

<any-lisp-form>

assert this fact as a belief of *current -agent*
remove all beliefs of *current-agent*
add a new commit-rule

let Lisp evaluate <form>

8 Beliefs
An agent’s beliefs consist of a set of facts. Each fact is associated with a predicate and a
fact-status list. This list describes the truth-values of the fact over time. An example of a

4

fact-status list would be the following:

[.. U] [lO:OO:OO T] [Sun Nov 24 12:00:00 F]

This indicates that the agent believes the predicate of the fact in question became true
at loam today, and will become false at 12 noon on Nov 24 of this year. If you ask this agent
whether she believes the fact at some time between these two, she will answer t; if you ask
about some time after this range, she will answer nil; if you ask about a time before this
range, she will answer nil both to queries about the fact and to queries about its negation.
This is because the truth value up until loam today is “unknown”.

As described in Yoav’s paper, AGENT0 agents believe any new fact they are told. Facts,
here, are really statements about the status of a proposition at a particular time. These are
parsed as statements of the form (TIME (PRED args)), internally called fact-patterns.
Each typically will give rise to a new fact-status record on the fact with the same proposition
as was passed in the message, time equal to TIME (which must be bound), and truth-value
taken from the presence or absence of a not before the PRED. Some special statements are
allowed in place of TIME here; see Section 12 below for details.

9 Commitments .

A commitment is just a particular kind of proposition which is stored in an agent’s beliefs
database. An agent can come to have a commitment either as a result of firing a commitment
rule, triggered by some incoming request message, by taking the action of committing to do
some other action, or by simply asserting the commitment into his beliefs. A commitment
can be unrequested by the agent to whom it is made. An agent can commit to herself; this
is considered a “choice”.

Each tick, an agent performs all of her commitments which have matured. A commitment
it is unasserted from the beliefs database (i.e., asserted with truth-value FALSE), at the time
the commitment is performed. This gives the agent a record of the time at which she actually
carried out the commitment.

10 Capabilities

The AGENT0 specification calls for a database of capabilities to be checked against auto-
matically each time an agent considers making a commitment. This current implementation
of AGENT0 does not include any capability database or checking of such a database.

11 Messages .
Agents can send each other REQUEST and INFORM messages. The syntax is as follows:

5

<AGENT> inform joetriv (now (i-am-cool))

<AGENT> request joetriv (do (+ now (* 5 m>> (becool))

The “now” in the message refers to the moment when the message was sent, not the
moment when it was received.

The next version of this interpreter will include support for a standardized message-
passing format in terms of files or UNIX ,sockets? w that agents running under this imple-
mentation can communicate with agents running under other implementations or on other
machines.

12 T i m e
AGENT0 can be run in either synchronous or synchronous mode. The TIMEGRAIN given
in each agent program is used to determine the irequency of simulating that agent. The
guarantee made in general of AGENT0 programs is that they keep their commitments by
the time they mature. In this implementation, the agents always perform their commitments
during the‘ first tick which is begun after those commitments mature. If the simulation
is being run in discrete, user-prompted tick cycles, as it will be when the user wants to
interactively send messages and inspect agents. then it is up to the user to hit return often
enough that the agents meet their commitments in a timely manner. To run the simulator in
an asynchronous mode, type run to the prompt.. -4x-i asterisk will appear before the prompt
to indicate that ticks are being run. To reiurn to the synchronous mode, type q or quit to
the prompt-

I have chosen to print real times to varying degrees of specificity, depending on how far
the time is from the current time. Thus, if the time is in the format HH:MM: SS, it is some
time during the current day, printed in B-hour time format. If the time is within the next
week, and in the same month as the current day, ihe day of the week is given with the time
for display purposes. If it is not, but it i,; within the same year, t.hen all but the year are
shown. Otherwise, a full display of DAY WINTH DATE HH :MM: SS YEAR is shown.

When using the Lisp syntax, users specify times by using Lisp functions. These functions
will operate on time in the internal (integer) format. So (+ ?time 30) is a time 30 seconds
later than the time to which ?time is bound. Several useful constants are defined to make
it easier to specify relative times. These include m for one minute, h for one hour, day,
week, and yr. I do not yet provide functions for specifying absolute times, but I plan
to soon. For now, you can generate a universal time integer by using the Lisp function
(encode-universal-time args>. Its syntax is a~ fdbws:

6

ENCODE-UNIVERSAL-TIME [Function] Args: (second minute hour date month
year &optional (timezone -9))
---------B--w--- -

The correct time zone to use on the West Coast of the United States is 8.
Users and agent programs can also use the word now to refer to the current time. Thus,

statements such as state ((+ now (* 2 m)) (i-am-cool)) are acceptable commands to
the <AGENT> prompt.

13 Examples
For practice, try running through a few examples in AGENT0 to get the hang of using
the interpreter and watching messages. This is an example of an interaction that exercises
a subset of the part of AGENT0 which currently works.

<AGENT> load joetriv
Defining agent "JOETRIV"
Parsing file sop/j oetriv - aop now

LOADED

<AGENT> inform joetriv (100 (on a b)) ; This means at time 100, (on a b)
JOETkIV will be informed next tick.

<JOETRIV> beliefs

CJOETRIW ; (press return to run a tick)

<JOETRIV> beliefs

(ON A B) [.. U] cl00 T]
<JOETRIV> state (200 (not (on a b)))
Belief added.

<JOETRIV> beliefs
(ON A B) [.. U] [IO0 T] [200 F]

<JOETRIV> bel? (150 (on a b))
T

<JOETRIV> bel? (-500 (on a b))
NIL

<JOETRIV> bel? (-500 (not (on a b)))
NIL

<JOETRIV> agent

<AGENT> inform joetriv (now (i-am-cool))
JOETRIV will be informed next tick.

<AGENT>

<AGENT> request joetriv (do (+ now m) (i-am-cool)) ; one minute from now
JOETRIV will be requested next tick.

<AGENT>

<AGENT> run

*<AGENT> ; * indicates asynchronous mode

<just under one minute passes>

This is the cool Joe Triv Agent.

9 ; user types q to quit run-mode

<AGENT> q

<cl>

References

[l] Y. Shoham. Agent Oriented Programming. Technical Report STAN-CS-90-1335, Com-
puter Science Department, Stanford University, 1990.

